Silvermont, Intel’s Low Power Architecture

Pages: 1 2 3 4 5 6 7 8

Silvermont is Intel’s first CPU core tailored for power efficient applications such as smartphones, tablets, and microservers. The 22nm microarchitecture features updated instruction set extensions, full out-of-order execution with a tightly coupled L2 cache, aggressive power management, and a new high performance SoC fabric. These enhancements deliver tremendous performance and frequency gains over the aging Atom core, putting Intel’s mobile strategy in a more competitive position.

Read More (8 pages)Discuss (408 comments)

Intel’s Long Awaited Return to the Memory Business

Pages: 1 2

Graphics is a focal point of the upcoming Haswell platform, necessitating a high bandwidth memory solution. To deliver high performance Intel is returning to the DRAM market, which it exited in 1985. The memory that ships with Haswell will be a custom embedded DRAM mounted in the package and manufactured on a variant of Intel’s 22nm process. By avoiding the commodity memory market, Intel will preserve high margins by cannibalizing discrete GPUs and dedicated graphics memory.

Read More (2 pages)Discuss (53 comments)

Intel’s Haswell CPU Microarchitecture

Pages: 1 2 3 4 5 6

Intel’s Haswell CPU is the first core optimized for 22nm and includes a huge number of innovations for developers and users. New instructions for transactional memory, bit-manipulation, full 256-bit integer SIMD and floating point multiply-accumulate are combined in a microarchitecture that essentially doubles computational throughput and cache bandwidth. Most importantly, the microarchitecture was designed for efficiency and extends Intel’s offerings down to 10W tablets, while maintaining leadership for notebooks, desktops, servers and workstations.

Read More (6 pages)Discuss (109 comments)

Intel’s Near-Threshold Voltage Computing and Applications

Pages: 1 2 3 4

Near-threshold voltage computing extends the voltage scaling associated with Moore’s Law and dramatically improves power and energy efficiency. The technology is superb for throughput, at the cost of latency, and best suited to Intel’s products for HPC and mobile graphics.

Read More (4 pages)Discuss (86 comments)

Haswell Transactional Memory Alternatives

Pages: 1 2 3

We previously theorized that Intel’s TSX extensions in Haswell use the caches to provide transactional memory semantics. This article describes an alternative approach based on minimal changes to the CPU core, contrasts the advantages of the two techniques and discusses the expected implementation in Haswell.

Read More (3 pages)Discuss (30 comments)

Computational Efficiency for CPUs and GPUs in 2012

Pages: 1 2 3

New compute efficiency data shows GPUs with a clear edge over CPUs, but the gap is narrowing as CPUs adopt wide vectors (e.g. AVX). Surprisingly, a throughput CPU is the most energy efficient processor, offering hope for future architectures. Our data also shows some advantages of AMD’s Bulldozer, and the overhead associated with highly scalable server CPUs.

Read More (3 pages)Discuss (133 comments)

Intel’s Ivy Bridge Graphics Architecture

Pages: 1 2 3 4 5 6 7 8

The Ivy Bridge GPU takes advantage of Intel’s 22nm FinFET process to nearly double performance and enhance programmability with DX11 and OpenCL 1.1 support. The new scalable architecture features more powerful shader cores, distributed sampling pipelines, a high bandwidth L3 cache, tesselation and 4K resolution displays. Overall, Ivy Bridge should be the highest performance integrated GPU at launch and Intel’s first competitive graphics offering.

Read More (8 pages)Discuss (32 comments)

Analysis of Haswell’s Transactional Memory

Pages: 1 2 3 4

Intel’s upcoming Haswell microprocessors include transactional memory and hardware lock elision that are exposed through the Transactional Synchronization Extensions or TSX. In this article, I discuss TSX and predict the implementation details of Haswell’s transactional memory and expected adoption across the industry, based on my previous experience.

Read More (4 pages)Discuss (6 comments)

ISSCC 2012 Preview

Highlights of the upcoming 2012 ISSCC include the first 22nm disclosures from Intel and several SoC papers from AMD, Cavium Networks and Oracle. Looking out further to the future, the clear focus is power consumption. There are several papers from Intel on low-power logic, one from IBM discussing 3D integration of embedded DRAM and a third from Fujitsu on system level power for the K supercomputer.

Read MoreDiscuss (8 comments)

Intel’s 22nm Tri-Gate Transistors

Pages: 1 2

For over 40 years, the planar transistor has been the keystone of the semiconductor industry. Intel’s new 22nm tri-gate transistor is revolutionary, moving transistors into a three dimensional world. After 10 years of research, this novel structure is the next step for Moore’s Law and promises to substantially improve performance and power efficiency.

Read More (2 pages)Discuss (44 comments)