ISSCC 2012 Preview

Highlights of the upcoming 2012 ISSCC include the first 22nm disclosures from Intel and several SoC papers from AMD, Cavium Networks and Oracle. Looking out further to the future, the clear focus is power consumption. There are several papers from Intel on low-power logic, one from IBM discussing 3D integration of embedded DRAM and a third from Fujitsu on system level power for the K supercomputer.

Read MoreDiscuss (8 comments)

Nvidia’s Kal-El Goes Asymmetric

Pages: 1 2

Nvidia’s Kal-El sports a novel 5th ‘companion’ core to lower idle power. We look at the trade-offs and benefits to this approach and explain why it will be a strong tablet SoC, but only an incremental gain for smartphones.

Read More (2 pages)Discuss (2 comments)

Llano at Hot Chips

AMD’s Hot Chips presentation delved into Llano, the first mainstream Fusion product, with details and results for power management. Previous disclosures painted a poor picture, which is far from the truth. Given the older CPU and GPU designs and time-to-market pressure, the results are quite good. Llano’s power management focuses on the most important aspects and is a solid foundation for future generations that will be much more power aware and optimized.

Read MoreDiscuss (14 comments)

What Do Overclockers and Supercomputers Have in Common?

Pages: 1 2

Enthusiasts and engineers know cooling is vital; it raises frequency and dramatically lowers power by reducing CPU or GPU temperatures. The world’s fastest supercomputer shows that thermal management can increase CPU performance/watt by 20% and cooling is critical for 3D integration and Moore’s Law.

Read More (2 pages)Discuss (37 comments)

Intel’s 22nm Tri-Gate Transistors

Pages: 1 2

For over 40 years, the planar transistor has been the keystone of the semiconductor industry. Intel’s new 22nm tri-gate transistor is revolutionary, moving transistors into a three dimensional world. After 10 years of research, this novel structure is the next step for Moore’s Law and promises to substantially improve performance and power efficiency.

Read More (2 pages)Discuss (44 comments)

Sandy Bridge ISSCC Update

Pages: 1 2

Intel’s Sandy Bridge ISSCC paper discusses a number of challenges they will eventually impact most vendors. The novel architectural choices and circuit design solutions that they describe give insight into current and future products from Intel, but also the general direction of the industry. The overarching theme is taking advantage of Moore’s Law at 32nm and beyond, which entails considerable attention to design complexity, process variation, power efficiency and validation.

Read More (2 pages)Discuss (8 comments)

22nm Design Challenges at ISSCC 2011

Pages: 1 2 3

As Moore’s Law continues, each new generation of semiconductor manufacturing is ushered in by new challenges, hurdles and solutions. At ISSCC 2011, a panel with speakers from Global Foundries, IBM, Intel, Renesas and TSMC discussed manufacturing and circuit design interactions at the upcoming 22nm node. Industry leaders have reached a broad technical consensus, although with several subtle differences. This report explores the key challenges and solutions at 22nm; focusing on variation and co-optimization between design and manufacturing. As a result of the needed collaboration, understanding of physical design and manufacturing is even more critical to cutting edge chip development and achieving good performance, power and yields.

Read More (3 pages)Discuss (25 comments)

IEDM 2010 Process Technology Update

Pages: 1 2 3 4 5 6 7 8

The integration predicted by Moore’s Law is fundamentally driven by advances in semiconductor manufacturing. One of the key challenges is scaling to ever finer and denser geometries, while improving the performance of transistors. IEDM and the VLSI Symposium are the premier venues to discuss the challenges and opportunities for future process technologies. No commercial 22nm process technologies were presented at IEDM 2010, but in the last two years a number of advances have been disclosed, both for high performance and low power applications. This article describes several 32nm and 28nm nodes from Intel, IBM’s Common Platform and TSMC, plus novel applications such as IBM’s 32nm eDRAM that have been disclosed at IEDM and VLSI.

Read More (8 pages)Discuss (16 comments)

Exploring the Intel and Achronix Deal

Pages: 1 2 3

Intel recently announced they would manufacture 22nm FPGA’s for Achronix, a small start up. Intel’s process technology and fabs are the heart of the company. Opening up to third parties is a tremendous departure from the status quo – one that surprised and perplexed many people. Our analysis explores three possible explanations and infers that Intel is enabling complementary technologies rather than entering the foundry business.

Read More (3 pages)Discuss (63 comments)

Computational Efficiency in Modern Processors

Pages: 1 2 3

The computer industry is on the cusp of yet another turn of the Wheel of Reincarnation, with the graphics processor unit (GPU) cast as the heir apparent of the floating point co-processors of days long gone. Modern GPUs are ostensibly higher performance and more power efficient than CPUs for their target workload, and many companies and media outlets claim they are leaving CPUs in the dust. Is this really the case though? This article explores the quantitative basis for these claims, with some surprising results.

Read More (3 pages)Discuss (60 comments)