Analysis of Haswell’s Transactional Memory

Pages: 1 2 3 4

Intel’s upcoming Haswell microprocessors include transactional memory and hardware lock elision that are exposed through the Transactional Synchronization Extensions or TSX. In this article, I discuss TSX and predict the implementation details of Haswell’s transactional memory and expected adoption across the industry, based on my previous experience.

Read More (4 pages)Discuss (6 comments)

AMD’s Analyst Update

Pages: 1 2

AMD’s new management took to the stage to highlight a new strategy and share the roadmap for 2012-2013. The executives generally came across well and there are only a few changes from the existing focus, with no major shifts. The updated server roadmap seems challenging, given the competition, but client systems should do decently and expand AMD’s footprint in mobile.

Read More (2 pages)Discuss (38 comments)

Medfield, Intel’s x86 Phone Chip

Pages: 1 2 3 4 5

For 4 years, Intel has struggled to move into the market for mobile devices. Conventional wisdom holds that x86 is too inefficient for smart phones. The recently announced 32nm Medfield proves that x86 is a viable option and that Intel can design smart phone products. We explore the Medfield SoC and analyze the impact on Intel’s mobile strategy.

Read More (5 pages)Discuss (68 comments)

IBM z196 Mainframe Architecture

Pages: 1 2 3 4 5 6 7 8

IBM’s mainframes are the oldest line of computers, dating back to 1964 and occupy a special place as the world’s first instruction set architecture. This longevity and extreme backwards compatibility are responsible for perhaps the most lucrative computer franchise. IBM’s z196 is the first mainframe with an out-of-order CMOS microprocessor, and also the first with an integrated L3 cache. These two innovations are largely responsible for a 30-40% improvement in performance over the previous generation z10.

Read More (8 pages)Discuss (614 comments)

AMD’s Mobile Strategy

Pages: 1 2

With all the recent changes, AMD seems like a ship adrift at sea with no clear strategy or vision. We look at AMD and where they are likely to head in the coming years for tablets and phones and explain why they will stick with x86, rather than embrace ARM as some have suggested.

Read More (2 pages)Discuss (338 comments)

ISSCC 2012 Preview

Highlights of the upcoming 2012 ISSCC include the first 22nm disclosures from Intel and several SoC papers from AMD, Cavium Networks and Oracle. Looking out further to the future, the clear focus is power consumption. There are several papers from Intel on low-power logic, one from IBM discussing 3D integration of embedded DRAM and a third from Fujitsu on system level power for the K supercomputer.

Read MoreDiscuss (8 comments)

Nvidia’s Kal-El Goes Asymmetric

Pages: 1 2

Nvidia’s Kal-El sports a novel 5th ‘companion’ core to lower idle power. We look at the trade-offs and benefits to this approach and explain why it will be a strong tablet SoC, but only an incremental gain for smartphones.

Read More (2 pages)Discuss (2 comments)

Llano at Hot Chips

AMD’s Hot Chips presentation delved into Llano, the first mainstream Fusion product, with details and results for power management. Previous disclosures painted a poor picture, which is far from the truth. Given the older CPU and GPU designs and time-to-market pressure, the results are quite good. Llano’s power management focuses on the most important aspects and is a solid foundation for future generations that will be much more power aware and optimized.

Read MoreDiscuss (14 comments)

Intel’s Sandy Bridge Graphics Architecture

Pages: 1 2 3 4 5 6 7 8 9

Sandy Bridge is the first GPU tightly integrated with an x86 through a shared L3 cache. Graphics performance has doubled, thanks to new shader cores and more powerful fixed functions. Sadly, there is no OpenCL or DirectX11 support till Ivy Bridge. Multimedia is superb, with full hardware decoding and accelerated encoding exposed through an API. The new design is a huge advance, but much work remains for future generations.

Read More (9 pages)Discuss (65 comments)

Sandy Bridge for Servers

Pages: 1 2 3

Intel’s Sandy Bridge-EP arrives late this year to take on AMD’s Bulldozer in 2 and 4-socket servers. It offers up to 8 cores with a new system architecture including 20MB L3 cache, 4 DDR3 memory controllers and faster 8GT/s QPI 1.1 links. Sandy Bridge-EP is also the first server CPU to integrate PCI-E 3.0 on-die, with up to 40 lanes – a significant bandwidth and power efficiency advantage. This article compares the system architecture and design to previous approaches and shows that Sandy Bridge-EP will be a compelling upgrade for 2-socket servers and attractive for certain 4-socket systems, particularly those with large I/O needs.

Read More (3 pages)Discuss (104 comments)