Adaptive Clocking in AMD’s Steamroller

My favorite paper from the ISSCC processor session describes an adaptive clocking technique implemented in AMD’s 28nm Steamroller core that compensates for power supply noise. Initial results show a 10-20% decrease in power consumption from reducing the voltage, with no loss in performance. This elegant technique is likely to be adopted across AMD’s entire product line including GPUs, x86 CPUs, ARM-based CPUs, and other critical blocks in highly integrated SoCs.

Read MoreDiscuss (12 comments)

ISSCC 2012 Preview

Highlights of the upcoming 2012 ISSCC include the first 22nm disclosures from Intel and several SoC papers from AMD, Cavium Networks and Oracle. Looking out further to the future, the clear focus is power consumption. There are several papers from Intel on low-power logic, one from IBM discussing 3D integration of embedded DRAM and a third from Fujitsu on system level power for the K supercomputer.

Read MoreDiscuss (8 comments)

Intel’s 22nm Tri-Gate Transistors

Pages: 1 2

For over 40 years, the planar transistor has been the keystone of the semiconductor industry. Intel’s new 22nm tri-gate transistor is revolutionary, moving transistors into a three dimensional world. After 10 years of research, this novel structure is the next step for Moore’s Law and promises to substantially improve performance and power efficiency.

Read More (2 pages)Discuss (44 comments)

22nm Design Challenges at ISSCC 2011

Pages: 1 2 3

As Moore’s Law continues, each new generation of semiconductor manufacturing is ushered in by new challenges, hurdles and solutions. At ISSCC 2011, a panel with speakers from Global Foundries, IBM, Intel, Renesas and TSMC discussed manufacturing and circuit design interactions at the upcoming 22nm node. Industry leaders have reached a broad technical consensus, although with several subtle differences. This report explores the key challenges and solutions at 22nm; focusing on variation and co-optimization between design and manufacturing. As a result of the needed collaboration, understanding of physical design and manufacturing is even more critical to cutting edge chip development and achieving good performance, power and yields.

Read More (3 pages)Discuss (25 comments)

IEDM 2010 Process Technology Update

Pages: 1 2 3 4 5 6 7 8

The integration predicted by Moore’s Law is fundamentally driven by advances in semiconductor manufacturing. One of the key challenges is scaling to ever finer and denser geometries, while improving the performance of transistors. IEDM and the VLSI Symposium are the premier venues to discuss the challenges and opportunities for future process technologies. No commercial 22nm process technologies were presented at IEDM 2010, but in the last two years a number of advances have been disclosed, both for high performance and low power applications. This article describes several 32nm and 28nm nodes from Intel, IBM’s Common Platform and TSMC, plus novel applications such as IBM’s 32nm eDRAM that have been disclosed at IEDM and VLSI.

Read More (8 pages)Discuss (16 comments)

Exploring the Intel and Achronix Deal

Pages: 1 2 3

Intel recently announced they would manufacture 22nm FPGA’s for Achronix, a small start up. Intel’s process technology and fabs are the heart of the company. Opening up to third parties is a tremendous departure from the status quo – one that surprised and perplexed many people. Our analysis explores three possible explanations and infers that Intel is enabling complementary technologies rather than entering the foundry business.

Read More (3 pages)Discuss (63 comments)

Process Technology at IEDM 2008

Pages: 1 2 3 4 5 6 7 8 9 10 11 12

David Kanter discusses 32nm process technologies presented at IEDM 2008 and VLSI 2009, including a discussion of high-k dielectrics and metal gates, immersion lithography and double patterning. Results from key manufacturers such as Intel, IBM/AMD, TSMC, Toshiba and others are discussed, analyzed and compared against previous generations using metrics for density (logic and SRAM) and switching speed metrics (for NFETs and PFETs).

Read More (12 pages)Discuss (26 comments)

3D Integration: A Revolution in Design

Pages: 1 2 3 4 5 6 7 8 9

The continuing pace of chip level feature miniaturization – Moore’s Law – has resulted in the doubling of the number of transistors per unit area approximately every couple of years. Chip designers have been provided with a plethora of transistor options to choose from in order to optimize for a given constraint. New materials with higher dielectric constants such as hafnium-based high-k gate oxide materials, along with metal gate electrodes, decrease leakage and boost drive current. Strained silicon engineering enables higher transistor switching speeds. Different transistor designs featuring multiple threshold voltages optimize for low power or high performance applications.

Read More (9 pages)Discuss (7 comments)

Intel’s 45nm Surprise: High-k Dielectrics and Metal Gates

Pages: 1 2 3 4

Manufacturing Versus Design With the announcement of the Core microarchitecture at Spring IDF of last year, Intel publicly stated their intentions to regain the lead in the world of x86 microprocessors. In a rather impressive fashion, the folks at Intel got down to business and executed almost flawlessly on their plans in 2006. Pretty much […]

Read More (4 pages)Discuss (62 comments)

A Historical Look at the VAX: DEC, NVAX, Alpha and Competitors

Pages: 1 2 3

A Historical Look at the VAX: DEC, NVAX, Alpha and the Competition [Part II] Editor’s Note and Introduction: This series of articles first appeared last summer in the comp.arch newsgroup, in a series of posts by John Mashey. Since then, it has been updated, edited and enriched with additional material and graphs by David Kanter, […]

Read More (3 pages)Discuss (16 comments)