Intel’s 22FFL Process Improves Power, Cost, and Analog

Pages: 1 2 3 4

Intel’s 22FFL (FinFET Low-power) is a variant of their existing 22nm process that is aimed at low-cost, extremely low-power, and analog/RF applications. 22FFL relaxes the ground rules to reduce the need for double patterning, thereby cutting costs. At the same time, Intel’s engineers essentially backported the second and third generation FinFETs from the 10nm and 14nm processes to 22FFL, improving performance and power efficiency with superior fin geometry and workfunction metals. Intel also created a large library of digital and analog transistors and passive components.

Read More (4 pages)Discuss (10 comments)

Knights Landing Details

Pages: 1 2

The 14nm Knights Landing leverages Intel’s resources with a laser-like focus on HPC to deliver a massive improvement over the previous generation. The building block of this architecture is a pair of Silvermont-inspired CPUs with wide vector units and most importantly, a brand new cache hierarchy, on-die fabric, and system infrastructure that is shared with Skylake. This article is an in-depth analysis and prediction of the Knights Landing architecture.

Read More (2 pages)Discuss (403 comments)

Knights Landing CPU Speculation

Pages: 1 2 3

Knights Landing is Intel’s first clean sheet redesign of the Larrabee family, targeted at throughput computing and manufactured on a 14nm process with products expected in late 2014 or early 2015. The adoption of AVX3, on-package embedded DRAM, and bootable products have been disclosed, but most details are unknown. This article analyzes the options available for the Knights Landing CPU core and explains why Intel’s existing cores are a poor fit for the target workloads, concluding that the most likely outcome is a new custom core for Knights Landing.

Read More (3 pages)Discuss (93 comments)