Transistor Count: A Flawed Metric

Pages: 1 2 3 4

Transistor count and transistor density are often portrayed as technical achievements and milestones. Many vendors brag about the complexity of their design, as measured by transistor count. In reality, transistor count and density varies considerably based on the type of chip and especially the type of circuitry within the chip, and there is no standard way of counting. The net result is that transistor count and density are only approximate metrics and focusing on those particular numbers risks losing sight of the bigger picture.

Read More (4 pages)Discuss (14 comments)

Power Delivery in a Modern Processor

Pages: 1 2 3 4 5

Power delivery is one of the most significant challenges in modern processors. The power delivery network (PDN) must meet the demanding requirements of modern CMOS technology, supply power with excellent efficiency, and swiftly respond to changes in power draw.

Read More (5 pages)Discuss (42 comments)

What’s Next for Moore’s Law? For Intel, III+V = 10nm QWFETs

On the eve of the 50th anniversary of Moore’s Law, the future of silicon CMOS is an open question. With rising costs and uncertain benefits, some semiconductor companies have questioned the wisdom of pursuing further scaling. I predict that Intel’s 10nm process technology will use Quantum Well FETs (QWFETs) with a 3D fin geometry, InGaAs for the NFET channel, and strained Germanium for the PFET channel, enabling lower voltage and more energy efficient transistors in 2016, and the rest of the industry will follow suit at the 7nm node.

Read MoreDiscuss (73 comments)