Article: PhysX87: Software Deficiency
By: ? (0xe2.0x9a.0x9b.delete@this.gmail.com), July 20, 2010 11:51 pm
Room: Moderated Discussions
slacker (s@lack.er) on 7/20/10 wrote:
---------------------------
>Matt Sayler (sayler@thewalrus.org) on 7/20/10 wrote:
>---------------------------
>>Does a speculative fetch (jump target) count?
>
>In this case, nope.
>
>He/She ("?") said that pipelining means there must be some speculative execution.
>As demonstrated by the 486, this is not true.
Why 486? That's too advanced, even 8086 does some form of primitive pipelining (according to http://en.wikipedia.org/wiki/Intel_8086), not to mention the later x86 processors.
>Although "?" went to the effort of explaining that OoO execution engines and speculation
>are different things, it looks like "?" has failed to differentiate between pipelining
>and - I am guessing - branch prediction.
The term "branch prediction" seems too constrained for me in this context. To generalize, it is about the assumptions a pipelined CPU makes about the address of the next instruction to be executed. Those assumptions can go wrong in pathological cases. And these assumptions are present there even if the code contains *no* branch instructions at all. Technically, a CPU does not need any branch instructions in order to be a universal Turing machine, it only needs instructions for writing to memory from which the CPU reads the code. A jump instruction is in fact a highly specialized memory write instruction.
It is pure speculation for an x86 CPU to think that "if the address of the current (non-branch) memory write instruction is ADDR, then the address of the next instruction will be ADDR+1". Writes to registers are OK from this point of view, since the CPU never fetches an instruction from there. In CPUs which are able to do data speculation, even writing a register might cause partial pipeline stalls. (I don't know why I am writing this here, because it seems obvious.)
If you think pipelining in a universal-computation CPU has nothing to do with speculation, you are simply wrong. On the other hand, non-speculative pipelining *is* possible, but only if the CPU is able to mathematically prove that a particular piece of code is never violating any assumptions made by the pipelined architecture. But how many existing CPUs are able to do such proofs?
Similarly, L1/L2 caches without any traces of speculative-ness whatsoever are also possible - provided the CPU is able to actually prove that the memory access patterns in a particular piece of code are fully known in advance. But how many existing CPUs are able to do such proofs? (Considering the design of the x86 ISA, I cannot say I blame them for this inability.)
-----
CPU 1: Not pipelined, executes N instructions per N cycles (IPC=1). This is simply a finite state machine.
CPU 2: Pipelined. Pipeline length is K. Executes (N+(K-1))/N instructions per cycle (IPC=0.999999) - however this is the *best-case* scenario. The worst-case scenario is that IPC goes down and the lower bound for that is N/K instructions per N cycles (IPC=1/K). (Well, I should use some other constant in the latter case, say K' instead of K, because it depends on the architecture of the pipeline, but as an approximation K is acceptable.)
---------------------------
>Matt Sayler (sayler@thewalrus.org) on 7/20/10 wrote:
>---------------------------
>>Does a speculative fetch (jump target) count?
>
>In this case, nope.
>
>He/She ("?") said that pipelining means there must be some speculative execution.
>As demonstrated by the 486, this is not true.
Why 486? That's too advanced, even 8086 does some form of primitive pipelining (according to http://en.wikipedia.org/wiki/Intel_8086), not to mention the later x86 processors.
>Although "?" went to the effort of explaining that OoO execution engines and speculation
>are different things, it looks like "?" has failed to differentiate between pipelining
>and - I am guessing - branch prediction.
The term "branch prediction" seems too constrained for me in this context. To generalize, it is about the assumptions a pipelined CPU makes about the address of the next instruction to be executed. Those assumptions can go wrong in pathological cases. And these assumptions are present there even if the code contains *no* branch instructions at all. Technically, a CPU does not need any branch instructions in order to be a universal Turing machine, it only needs instructions for writing to memory from which the CPU reads the code. A jump instruction is in fact a highly specialized memory write instruction.
It is pure speculation for an x86 CPU to think that "if the address of the current (non-branch) memory write instruction is ADDR, then the address of the next instruction will be ADDR+1". Writes to registers are OK from this point of view, since the CPU never fetches an instruction from there. In CPUs which are able to do data speculation, even writing a register might cause partial pipeline stalls. (I don't know why I am writing this here, because it seems obvious.)
If you think pipelining in a universal-computation CPU has nothing to do with speculation, you are simply wrong. On the other hand, non-speculative pipelining *is* possible, but only if the CPU is able to mathematically prove that a particular piece of code is never violating any assumptions made by the pipelined architecture. But how many existing CPUs are able to do such proofs?
Similarly, L1/L2 caches without any traces of speculative-ness whatsoever are also possible - provided the CPU is able to actually prove that the memory access patterns in a particular piece of code are fully known in advance. But how many existing CPUs are able to do such proofs? (Considering the design of the x86 ISA, I cannot say I blame them for this inability.)
-----
CPU 1: Not pipelined, executes N instructions per N cycles (IPC=1). This is simply a finite state machine.
CPU 2: Pipelined. Pipeline length is K. Executes (N+(K-1))/N instructions per cycle (IPC=0.999999) - however this is the *best-case* scenario. The worst-case scenario is that IPC goes down and the lower bound for that is N/K instructions per N cycles (IPC=1/K). (Well, I should use some other constant in the latter case, say K' instead of K, because it depends on the architecture of the pipeline, but as an approximation K is acceptable.)
Topic | Posted By | Date |
---|---|---|
A bit off base | John Mann | 2010/07/07 07:04 AM |
A bit off base | David Kanter | 2010/07/07 11:28 AM |
SSE vs x87 | Joel Hruska | 2010/07/07 12:53 PM |
SSE vs x87 | Michael S | 2010/07/07 01:07 PM |
SSE vs x87 | hobold | 2010/07/08 05:12 AM |
SSE vs x87 | David Kanter | 2010/07/07 02:55 PM |
SSE vs x87 | Andi Kleen | 2010/07/08 02:43 AM |
80 bit FP | Ricardo B | 2010/07/08 07:35 AM |
80 bit FP | David Kanter | 2010/07/08 11:14 AM |
80 bit FP | Kevin G | 2010/07/08 02:12 PM |
80 bit FP | Ian Ollmann | 2010/07/19 12:49 AM |
80 bit FP | David Kanter | 2010/07/19 11:33 AM |
80 bit FP | Anil Maliyekkel | 2010/07/19 04:49 PM |
80 bit FP | rwessel | 2010/07/19 05:41 PM |
80 bit FP | Matt Waldhauer | 2010/07/21 11:11 AM |
80 bit FP | Emil Briggs | 2010/07/22 09:06 AM |
A bit off base | John Mann | 2010/07/08 11:06 AM |
A bit off base | David Kanter | 2010/07/08 11:27 AM |
A bit off base | Ian Ameline | 2010/07/09 10:10 AM |
A bit off base | Michael S | 2010/07/10 02:13 PM |
A bit off base | Ian Ameline | 2010/07/11 07:51 AM |
A bit off base | David Kanter | 2010/07/07 09:46 PM |
A bit off base | Anon | 2010/07/08 12:47 AM |
A bit off base | anon | 2010/07/08 02:15 AM |
A bit off base | Gabriele Svelto | 2010/07/08 04:11 AM |
Physics engine history | Peter Clare | 2010/07/08 04:49 AM |
Physics engine history | Null Pointer Exception | 2010/07/08 06:07 AM |
Physics engine history | Ralf | 2010/07/08 03:09 PM |
Physics engine history | David Kanter | 2010/07/08 04:16 PM |
Physics engine history | sJ | 2010/07/08 11:36 PM |
Physics engine history | Gabriele Svelto | 2010/07/09 12:59 AM |
Physics engine history | sJ | 2010/07/13 06:35 AM |
Physics engine history | David Kanter | 2010/07/09 09:25 AM |
Physics engine history | sJ | 2010/07/13 06:49 AM |
Physics engine history | fvdbergh | 2010/07/13 07:27 AM |
A bit off base | John Mann | 2010/07/08 11:11 AM |
A bit off base | David Kanter | 2010/07/08 11:31 AM |
150 GFLOP/s measured? | anon | 2010/07/08 07:10 PM |
150 GFLOP/s measured? | David Kanter | 2010/07/08 07:53 PM |
150 GFLOP/s measured? | Aaron Spink | 2010/07/08 09:05 PM |
150 GFLOP/s measured? | anon | 2010/07/08 09:31 PM |
150 GFLOP/s measured? | Aaron Spink | 2010/07/08 10:43 PM |
150 GFLOP/s measured? | David Kanter | 2010/07/08 11:27 PM |
150 GFLOP/s measured? | Ian Ollmann | 2010/07/19 01:14 AM |
150 GFLOP/s measured? | anon | 2010/07/19 06:39 AM |
150 GFLOP/s measured? | hobold | 2010/07/19 07:26 AM |
Philosophy for achieving peak | David Kanter | 2010/07/19 11:49 AM |
150 GFLOP/s measured? | Linus Torvalds | 2010/07/19 07:36 AM |
150 GFLOP/s measured? | Richard Cownie | 2010/07/19 08:42 AM |
150 GFLOP/s measured? | Aaron Spink | 2010/07/19 08:56 AM |
150 GFLOP/s measured? | hobold | 2010/07/19 09:30 AM |
150 GFLOP/s measured? | Groo | 2010/07/19 02:31 PM |
150 GFLOP/s measured? | hobold | 2010/07/19 04:17 PM |
150 GFLOP/s measured? | Groo | 2010/07/19 06:18 PM |
150 GFLOP/s measured? | Anon | 2010/07/19 06:18 PM |
150 GFLOP/s measured? | Mark Roulo | 2010/07/19 11:47 AM |
150 GFLOP/s measured? | slacker | 2010/07/19 12:55 PM |
150 GFLOP/s measured? | Mark Roulo | 2010/07/19 01:00 PM |
150 GFLOP/s measured? | anonymous42 | 2010/07/25 12:31 PM |
150 GFLOP/s measured? | Richard Cownie | 2010/07/19 12:41 PM |
150 GFLOP/s measured? | Linus Torvalds | 2010/07/19 02:57 PM |
150 GFLOP/s measured? | Richard Cownie | 2010/07/19 04:10 PM |
150 GFLOP/s measured? | Richard Cownie | 2010/07/19 04:10 PM |
150 GFLOP/s measured? | hobold | 2010/07/19 04:25 PM |
150 GFLOP/s measured? | Linus Torvalds | 2010/07/19 04:31 PM |
150 GFLOP/s measured? | Richard Cownie | 2010/07/20 06:04 AM |
150 GFLOP/s measured? | jrl | 2010/07/20 01:18 AM |
150 GFLOP/s measured? | anonymous42 | 2010/07/25 12:00 PM |
150 GFLOP/s measured? | David Kanter | 2010/07/25 12:52 PM |
150 GFLOP/s measured? | Anon | 2010/07/19 06:15 PM |
150 GFLOP/s measured? | Linus Torvalds | 2010/07/19 07:27 PM |
150 GFLOP/s measured? | Anon | 2010/07/19 09:54 PM |
150 GFLOP/s measured? | anon | 2010/07/19 11:45 PM |
150 GFLOP/s measured? | hobold | 2010/07/19 09:14 AM |
150 GFLOP/s measured? | Linus Torvalds | 2010/07/19 11:56 AM |
150 GFLOP/s measured? | a reader | 2010/07/21 08:16 PM |
150 GFLOP/s measured? | Linus Torvalds | 2010/07/21 09:05 PM |
150 GFLOP/s measured? | anon | 2010/07/22 02:09 AM |
150 GFLOP/s measured? | a reader | 2010/07/22 07:53 PM |
150 GFLOP/s measured? | gallier2 | 2010/07/23 05:58 AM |
150 GFLOP/s measured? | a reader | 2010/07/25 08:35 AM |
150 GFLOP/s measured? | David Kanter | 2010/07/25 11:49 AM |
150 GFLOP/s measured? | a reader | 2010/07/26 07:03 PM |
150 GFLOP/s measured? | Michael S | 2010/07/28 01:38 AM |
150 GFLOP/s measured? | Gabriele Svelto | 2010/07/28 01:44 AM |
150 GFLOP/s measured? | anon | 2010/07/23 04:55 PM |
150 GFLOP/s measured? | slacker | 2010/07/24 12:48 AM |
150 GFLOP/s measured? | anon | 2010/07/24 02:36 AM |
150 GFLOP/s measured? | Vincent Diepeveen | 2010/07/27 05:37 PM |
150 GFLOP/s measured? | ? | 2010/07/27 11:42 PM |
150 GFLOP/s measured? | slacker | 2010/07/28 05:55 AM |
Intel's clock rate projections | AM | 2010/07/28 02:03 AM |
nostalgia ain't what it used to be | someone | 2010/07/28 05:38 AM |
Intel's clock rate projections | AM | 2010/07/28 10:12 PM |
Separate the OoO-ness from speculative-ness | ? | 2010/07/20 07:19 AM |
Separate the OoO-ness from speculative-ness | Mark Christiansen | 2010/07/20 02:26 PM |
Separate the OoO-ness from speculative-ness | slacker | 2010/07/20 06:04 PM |
Separate the OoO-ness from speculative-ness | Matt Sayler | 2010/07/20 06:10 PM |
Separate the OoO-ness from speculative-ness | slacker | 2010/07/20 09:37 PM |
Separate the OoO-ness from speculative-ness | ? | 2010/07/20 11:51 PM |
Separate the OoO-ness from speculative-ness | anon | 2010/07/21 02:16 AM |
Separate the OoO-ness from speculative-ness | ? | 2010/07/21 07:05 AM |
Software conventions | Paul A. Clayton | 2010/07/21 08:52 AM |
Software conventions | ? | 2010/07/22 05:43 AM |
Speculation | David Kanter | 2010/07/21 10:32 AM |
Pipelining affects the ISA | ? | 2010/07/22 10:58 PM |
Pipelining affects the ISA | ? | 2010/07/22 11:14 PM |
Pipelining affects the ISA | rwessel | 2010/07/23 12:03 AM |
Pipelining affects the ISA | ? | 2010/07/23 05:50 AM |
Pipelining affects the ISA | ? | 2010/07/23 06:10 AM |
Pipelining affects the ISA | Thiago Kurovski | 2010/07/23 02:59 PM |
Pipelining affects the ISA | anon | 2010/07/24 07:35 AM |
Pipelining affects the ISA | Thiago Kurovski | 2010/07/24 11:12 AM |
Pipelining affects the ISA | Gabriele Svelto | 2010/07/26 02:50 AM |
Pipelining affects the ISA | IlleglWpns | 2010/07/26 05:14 AM |
Pipelining affects the ISA | Michael S | 2010/07/26 03:33 PM |
Separate the OoO-ness from speculative-ness | anon | 2010/07/21 05:53 PM |
Separate the OoO-ness from speculative-ness | ? | 2010/07/22 04:15 AM |
Separate the OoO-ness from speculative-ness | anon | 2010/07/22 04:27 AM |
Separate the OoO-ness from speculative-ness | slacker | 2010/07/21 07:45 PM |
Separate the OoO-ness from speculative-ness | anon | 2010/07/22 01:57 AM |
Separate the OoO-ness from speculative-ness | ? | 2010/07/22 05:26 AM |
Separate the OoO-ness from speculative-ness | Dan Downs | 2010/07/22 08:14 AM |
Confusing and not very useful definition | David Kanter | 2010/07/22 12:41 PM |
Confusing and not very useful definition | ? | 2010/07/22 10:58 PM |
Confusing and not very useful definition | Ungo | 2010/07/24 12:06 PM |
Confusing and not very useful definition | ? | 2010/07/25 10:23 PM |
Separate the OoO-ness from speculative-ness | someone | 2010/07/20 08:02 PM |
Separate the OoO-ness from speculative-ness | Thiago Kurovski | 2010/07/21 04:13 PM |
You are just quoting SINGLE precision flops? OMG what planet do you live? | Vincent Diepeveen | 2010/07/19 10:26 AM |
The prior poster was talking about SP (NT) | David Kanter | 2010/07/19 11:34 AM |
All FFT's need double precision | Vincent Diepeveen | 2010/07/19 02:02 PM |
All FFT's need double precision | David Kanter | 2010/07/19 02:09 PM |
All FFT's need double precision | Vincent Diepeveen | 2010/07/19 04:06 PM |
All FFT's need double precision - not | Michael S | 2010/07/20 01:16 AM |
All FFT's need double precision - not | Ungo | 2010/07/21 12:04 AM |
All FFT's need double precision - not | Michael S | 2010/07/21 02:35 PM |
All FFT's need double precision - not | EduardoS | 2010/07/21 02:52 PM |
All FFT's need double precision - not | Anon | 2010/07/21 05:23 PM |
All FFT's need double precision - not | Ricardo B | 2010/07/26 07:46 AM |
I'm on a boat! | anon | 2010/07/22 11:42 AM |
All FFT's need double precision - not | Vincent Diepeveen | 2010/07/24 11:39 PM |
All FFT's need double precision - not | slacker | 2010/07/25 03:27 AM |
All FFT's need double precision - not | Ricardo B | 2010/07/26 07:40 AM |
All FFT's need double precision - not | EduardoS | 2010/07/25 08:37 AM |
All FFT's need double precision - not | Michael S | 2010/07/25 10:43 AM |
All FFT's need double precision - not | Vincent Diepeveen | 2010/07/24 11:19 PM |
A bit off base | EduardoS | 2010/07/08 04:08 PM |
A bit off base | Groo | 2010/07/08 06:11 PM |
A bit off base | john mann | 2010/07/08 06:58 PM |
All right...let's cool it... | David Kanter | 2010/07/08 07:54 PM |
A bit off base | Vincent Diepeveen | 2010/07/19 03:36 PM |