By: Nicolas Capens (nicolas.capens.delete@this.gmail.com), February 15, 2011 5:22 am
Room: Moderated Discussions
Hi David,
David Kanter (dkanter@realworldtech.com) on 2/11/11 wrote:
---------------------------
>>That's exactly my point. The latency doesn't make or break >being thoughput-oriented.
>>Unless you want to imply that AMD's GPUs are less of a >throughput-oriented architecture than NVIDIA's?
>
>It's just one of many things.
Then please sum up the "many things" that make a CPU not capable of high *effective* throughput for graphics and HPC workloads. Keep in mind that a 6-core Sandy Bridge with FMA would be capable of delivering 650 GFLOPS, while the 12 EU IGP can only do 130 GFLOPS. What sort of magic makes the latter, which has lower theoretical throughput and little or no latency optimizations, achieve significantly better effective throughput?
Also note once more that a GeForce GT 420 has a TDP of 50 Watt, at practically the same clock frequency as Sandy Bridge's IGP, while also only achieving 130 GFLOPS. Mobile Sandy Bridge CPUs have a TDP of 45 Watt. Note that it can be further reduced by clocking them lower, while still offering more GFLOPS than the IGP.
Obviously FMA increases the power consumption of the CPU as well, but the control logic remains practically the same. So to power consumed by the control logic goes down with every process node, while more of the power budget is spent on actual floating-point operations. At the same time GPUs have to do the reverse. There's no FMA to add and simply doubling the number of shader cores does not double the *effective* throughput. Instead they need to rely on smarter scheduling or larger register files and caches to compensate for the latency.
There's no escaping the convergence. You can't have a million shader cores without a massive amount of control logic and on-die storage to keep feeding them independent data. Just look at the history of GPUs. The first generation had practically no control logic and no on-die storage. Data went in at one end of the pipeline, and the processed data coming out was written back to RAM. Nowadays we have a massive number of strands in flight. This requires lots of control logic and storage to hold the context for each of them.
Note also that unification helps combat this. By turning texture units into additional generic gather/scatter units and performing the filtering in the shader cores, the (expanding) shader array has more work during heavy filtering, is less bottlenecked due a lack of generic load/store operations, and offers more performance during arithmetic limited tasks. You get these benefits in exchange for a little bit of extra power consumption, but that gets amortized by smaller process nodes anyway.
I believe you're greatly overestimating the power consumption of the CPUs control logic, compared to the GPUs control logic. It takes more area to achieve ILP, that's certainly true, but when you're only executing NOPs there's practically no switching activity. The power consumption is proportional to the number of uops being processed. And I've also already detailed how gather/scatter support would reduce the number of uops for parallel load/store operations by a factor 8-24. As for the area cost, that's fine, because the consumer is already paying for that anyway to make the CPU efficient at latency-oriented workloads.
So seriously, the question isn't whether or not CPUs will take over the role of the IGP, but when.
>And honestly, latency between NV and ATI is pretty
>similar. If you look at it quantitatively - comparing the latency of dependent
>operations, you'll see they are vastly more similar to each other, than a CPU.
Really? Cayman XT takes 8 cycles at 880 MHz. So that's 9 ns. GF110 is reported to have a warp latency of 32 cycles, and clocks at 1544 MHz. So that's 20 ns. Clearly a factor 2x is not enough to call one or the other sigificantly worse at the relevant throughput-oriented workload: graphics.
That said, Cayman takes 4 cycles to read the register file. So the ALUs themselves take 4.5 ns. And the ALUs can perform dot products and even SFU operations. A dot product instruction takes 12 cycles on the CPU, so at 3.4 GHz that's 3.5 ns. Clearly CPUs don't have to push their ALUs very hard.
Dependent instruction latency is irrelevant to being throughput oriented or not. In fact you'd better have a low lantecy to prevent running out of registers. Note that executing dependent dot products on GF110 even takes 62 ns. Clearly it's not making or breaking a graphics architecture though.
At the thing that actually could be directly relevant to efficiency, ALU latency, CPUs are not significantly different. So I'm sorry but I think you got fooled by your own preconceptions again.
>>>Anyway, long latency instructions are the best case for GPUs, the reason CPUs are
>>>clocked at 3GHz+ and hav deep OoO buffers is the integer operations where GPUs are, what? 30 times slower?
>>
>>Still not proving this is relevant to being throughput-oriented or not.
>
>Actually it does. CPUs are simply the best for latency sensitive workloads. GPUs
>are the best for some throughput sensitive workloads.
It's clear by now that this "30 times slower" was yet another prejudice. So calling things "the best" based on this misinformation is worthless.
That said, yes, CPUs are great for latency sensitive workloads. But that's not preventing them from being good at throughput sensitive workloads! Getting the best of both worlds takes area, but as noted before the register file reduction compensates that somewhat, and in a CPU it's paid for anyway. So unifying the IGP into the CPU makes a great deal of sense.
>>>>Note though that on GT200 it was 24 cycles, so there's some convergence taking place.
>>>
>>>In GT200 it was pathetically slow, not being so slow doesn't prove anything,
>R600 still have lower latency than Fermi.
>>
>>Again proving latency optimizations don't make it any less >of a throughput-oriented
>>architecture.
>
>Yes it does. Unlike software, hardware is a 0-sum game where spending power or
>area for an optimization means it isn't available for another. Sometimes you can
>save power with an optimization, but you spend area. Sometimes you save area, but
>spend power. Regardless, you have finite engineering resources, which means you
>have to choose whether to spend more on latency optimization or throughput optimization.
>
>If you are spending a lot of power/area to reduce latency, you are not by definition
>NOT spending that power/area to improve throughput. Reducing latency can improve
>throughput, but it's not the optimal strategy. It improves flexibility, but again,
>is not optimal for streaming type workloads.
Wrong again. Spending area to reduce lantecy does not have to mean "by definition" not improving *effective* throughput. Reducing latency means you don't need to keep as many strands in flight, which in turn means you can have a smaller register file and the cache pollution is greatly reduced.
As an historic example, note that decoupling the GPU's execution of arithmetic instructions and texture instructions, was effectively a latency reduction optimization. It costed control logic but this latency optimization was the key to allow an increase in throughput without costing a gigantic register file.
So with all due respect, calling hardware design a zero-sum game is plain incorrect. There are design choices which optimize multiple aspects, increasing effective performance beyond what's possible by focussing on optimizing one aspect alone.
Even if we consider software to be less of a zero-sum game than hardware, it's clear that this is an argument pro unification.
Best regards,
Nicolas
David Kanter (dkanter@realworldtech.com) on 2/11/11 wrote:
---------------------------
>>That's exactly my point. The latency doesn't make or break >being thoughput-oriented.
>>Unless you want to imply that AMD's GPUs are less of a >throughput-oriented architecture than NVIDIA's?
>
>It's just one of many things.
Then please sum up the "many things" that make a CPU not capable of high *effective* throughput for graphics and HPC workloads. Keep in mind that a 6-core Sandy Bridge with FMA would be capable of delivering 650 GFLOPS, while the 12 EU IGP can only do 130 GFLOPS. What sort of magic makes the latter, which has lower theoretical throughput and little or no latency optimizations, achieve significantly better effective throughput?
Also note once more that a GeForce GT 420 has a TDP of 50 Watt, at practically the same clock frequency as Sandy Bridge's IGP, while also only achieving 130 GFLOPS. Mobile Sandy Bridge CPUs have a TDP of 45 Watt. Note that it can be further reduced by clocking them lower, while still offering more GFLOPS than the IGP.
Obviously FMA increases the power consumption of the CPU as well, but the control logic remains practically the same. So to power consumed by the control logic goes down with every process node, while more of the power budget is spent on actual floating-point operations. At the same time GPUs have to do the reverse. There's no FMA to add and simply doubling the number of shader cores does not double the *effective* throughput. Instead they need to rely on smarter scheduling or larger register files and caches to compensate for the latency.
There's no escaping the convergence. You can't have a million shader cores without a massive amount of control logic and on-die storage to keep feeding them independent data. Just look at the history of GPUs. The first generation had practically no control logic and no on-die storage. Data went in at one end of the pipeline, and the processed data coming out was written back to RAM. Nowadays we have a massive number of strands in flight. This requires lots of control logic and storage to hold the context for each of them.
Note also that unification helps combat this. By turning texture units into additional generic gather/scatter units and performing the filtering in the shader cores, the (expanding) shader array has more work during heavy filtering, is less bottlenecked due a lack of generic load/store operations, and offers more performance during arithmetic limited tasks. You get these benefits in exchange for a little bit of extra power consumption, but that gets amortized by smaller process nodes anyway.
I believe you're greatly overestimating the power consumption of the CPUs control logic, compared to the GPUs control logic. It takes more area to achieve ILP, that's certainly true, but when you're only executing NOPs there's practically no switching activity. The power consumption is proportional to the number of uops being processed. And I've also already detailed how gather/scatter support would reduce the number of uops for parallel load/store operations by a factor 8-24. As for the area cost, that's fine, because the consumer is already paying for that anyway to make the CPU efficient at latency-oriented workloads.
So seriously, the question isn't whether or not CPUs will take over the role of the IGP, but when.
>And honestly, latency between NV and ATI is pretty
>similar. If you look at it quantitatively - comparing the latency of dependent
>operations, you'll see they are vastly more similar to each other, than a CPU.
Really? Cayman XT takes 8 cycles at 880 MHz. So that's 9 ns. GF110 is reported to have a warp latency of 32 cycles, and clocks at 1544 MHz. So that's 20 ns. Clearly a factor 2x is not enough to call one or the other sigificantly worse at the relevant throughput-oriented workload: graphics.
That said, Cayman takes 4 cycles to read the register file. So the ALUs themselves take 4.5 ns. And the ALUs can perform dot products and even SFU operations. A dot product instruction takes 12 cycles on the CPU, so at 3.4 GHz that's 3.5 ns. Clearly CPUs don't have to push their ALUs very hard.
Dependent instruction latency is irrelevant to being throughput oriented or not. In fact you'd better have a low lantecy to prevent running out of registers. Note that executing dependent dot products on GF110 even takes 62 ns. Clearly it's not making or breaking a graphics architecture though.
At the thing that actually could be directly relevant to efficiency, ALU latency, CPUs are not significantly different. So I'm sorry but I think you got fooled by your own preconceptions again.
>>>Anyway, long latency instructions are the best case for GPUs, the reason CPUs are
>>>clocked at 3GHz+ and hav deep OoO buffers is the integer operations where GPUs are, what? 30 times slower?
>>
>>Still not proving this is relevant to being throughput-oriented or not.
>
>Actually it does. CPUs are simply the best for latency sensitive workloads. GPUs
>are the best for some throughput sensitive workloads.
It's clear by now that this "30 times slower" was yet another prejudice. So calling things "the best" based on this misinformation is worthless.
That said, yes, CPUs are great for latency sensitive workloads. But that's not preventing them from being good at throughput sensitive workloads! Getting the best of both worlds takes area, but as noted before the register file reduction compensates that somewhat, and in a CPU it's paid for anyway. So unifying the IGP into the CPU makes a great deal of sense.
>>>>Note though that on GT200 it was 24 cycles, so there's some convergence taking place.
>>>
>>>In GT200 it was pathetically slow, not being so slow doesn't prove anything,
>R600 still have lower latency than Fermi.
>>
>>Again proving latency optimizations don't make it any less >of a throughput-oriented
>>architecture.
>
>Yes it does. Unlike software, hardware is a 0-sum game where spending power or
>area for an optimization means it isn't available for another. Sometimes you can
>save power with an optimization, but you spend area. Sometimes you save area, but
>spend power. Regardless, you have finite engineering resources, which means you
>have to choose whether to spend more on latency optimization or throughput optimization.
>
>If you are spending a lot of power/area to reduce latency, you are not by definition
>NOT spending that power/area to improve throughput. Reducing latency can improve
>throughput, but it's not the optimal strategy. It improves flexibility, but again,
>is not optimal for streaming type workloads.
Wrong again. Spending area to reduce lantecy does not have to mean "by definition" not improving *effective* throughput. Reducing latency means you don't need to keep as many strands in flight, which in turn means you can have a smaller register file and the cache pollution is greatly reduced.
As an historic example, note that decoupling the GPU's execution of arithmetic instructions and texture instructions, was effectively a latency reduction optimization. It costed control logic but this latency optimization was the key to allow an increase in throughput without costing a gigantic register file.
So with all due respect, calling hardware design a zero-sum game is plain incorrect. There are design choices which optimize multiple aspects, increasing effective performance beyond what's possible by focussing on optimizing one aspect alone.
Even if we consider software to be less of a zero-sum game than hardware, it's clear that this is an argument pro unification.
Best regards,
Nicolas
Topic | Posted By | Date |
---|---|---|
Sandy Bridge CPU article online | David Kanter | 2010/09/26 09:35 PM |
Sandy Bridge CPU article online | Alex | 2010/09/27 05:22 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:06 AM |
Sandy Bridge CPU article online | someone | 2010/09/27 06:03 AM |
Sandy Bridge CPU article online | slacker | 2010/09/27 02:08 PM |
PowerPC is now Power | Paul A. Clayton | 2010/09/27 04:34 PM |
Sandy Bridge CPU article online | Dave | 2010/11/10 10:15 PM |
Sandy Bridge CPU article online | someone | 2010/09/27 06:23 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 06:39 PM |
Optimizing register clear | Paul A. Clayton | 2010/09/28 12:34 PM |
Sandy Bridge CPU article online | MS | 2010/09/27 06:54 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:15 AM |
Sandy Bridge CPU article online | MS | 2010/09/27 11:02 AM |
Sandy Bridge CPU article online | mpx | 2010/09/27 11:44 AM |
Sandy Bridge CPU article online | MS | 2010/09/27 02:37 PM |
Precisely | David Kanter | 2010/09/27 03:22 PM |
Sandy Bridge CPU article online | Richard Cownie | 2010/09/27 08:27 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:01 AM |
Sandy Bridge CPU article online | Richard Cownie | 2010/09/27 10:40 AM |
Sandy Bridge CPU article online | boots | 2010/09/27 11:19 AM |
Right, mid-2011, not 2010. Sorry (NT) | Richard Cownie | 2010/09/27 11:42 AM |
bulldozer single thread performance | Max | 2010/09/27 12:57 PM |
bulldozer single thread performance | Matt Waldhauer | 2011/03/02 11:32 AM |
Sandy Bridge CPU article online | Pun Zu | 2010/09/27 11:32 AM |
Sandy Bridge CPU article online | ? | 2010/09/27 11:44 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 01:11 PM |
My opinion is that anything that would take advantage of 256-bit AVX | redpriest | 2010/09/27 01:17 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/27 03:09 PM |
My opinion is that anything that would take advantage of 256-bit AVX | redpriest | 2010/09/27 04:06 PM |
My opinion is that anything that would take advantage of 256-bit AVX | David Kanter | 2010/09/27 05:23 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 03:57 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:35 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Matt Waldhauer | 2010/09/28 10:58 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/27 06:39 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:14 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Megol | 2010/09/28 02:17 AM |
My opinion is that anything that would take advantage of 256-bit AVX | Michael S | 2010/09/28 05:47 AM |
PGI | Carlie Coats | 2010/09/28 10:23 AM |
gfortran... | Carlie Coats | 2010/09/29 09:33 AM |
My opinion is that anything that would take advantage of 256-bit AVX | mpx | 2010/09/28 12:58 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Michael S | 2010/09/28 01:36 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Foo_ | 2010/09/29 01:08 AM |
My opinion is that anything that would take advantage of 256-bit AVX | mpx | 2010/09/28 11:37 AM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/28 01:19 PM |
My opinion is that anything that would take advantage of 256-bit AVX | hobold | 2010/09/28 03:08 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:26 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Anthony | 2010/09/28 10:31 PM |
Sandy Bridge CPU article online | Hans de Vries | 2010/09/27 02:19 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 03:19 PM |
Sandy Bridge CPU article online | -Sweeper_ | 2010/09/27 05:50 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 06:41 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/27 02:55 PM |
Sandy Bridge CPU article online | line98 | 2010/09/27 03:05 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 03:20 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/27 03:23 PM |
Sandy Bridge CPU article online | line98 | 2010/09/27 03:42 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 09:33 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 04:04 PM |
Sandy Bridge CPU article online | Jack | 2010/09/27 04:40 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 11:47 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 11:54 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 11:59 PM |
Sandy Bridge CPU article online | JS | 2010/09/28 01:18 AM |
Sandy Bridge CPU article online | Royi | 2010/09/28 01:31 AM |
Sandy Bridge CPU article online | Jack | 2010/09/28 06:34 AM |
Sandy Bridge CPU article online | Royi | 2010/09/28 08:22 AM |
Sandy Bridge CPU article online | Foo_ | 2010/09/28 12:53 PM |
Sandy Bridge CPU article online | Paul | 2010/09/28 01:17 PM |
Sandy Bridge CPU article online | mpx | 2010/09/28 01:22 PM |
Sandy Bridge CPU article online | anonymous | 2010/09/28 02:06 PM |
Sandy Bridge CPU article online | IntelUser2000 | 2010/09/29 01:49 AM |
Sandy Bridge CPU article online | Jack | 2010/09/28 05:08 PM |
Sandy Bridge CPU article online | mpx | 2010/09/29 01:50 AM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/29 12:01 PM |
Sandy Bridge CPU article online | Royi | 2010/09/29 12:48 PM |
Sandy Bridge CPU article online | mpx | 2010/09/29 02:15 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/29 02:27 PM |
Sandy Bridge CPU article online | ? | 2010/09/29 11:18 PM |
Sandy Bridge CPU article online | savantu | 2010/09/30 12:28 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 03:43 AM |
Sandy Bridge CPU article online | gallier2 | 2010/09/30 04:18 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 08:38 AM |
Sandy Bridge CPU article online | David Hess | 2010/09/30 10:28 AM |
moderation (again) | hobold | 2010/10/01 05:08 AM |
Sandy Bridge CPU article online | Megol | 2010/09/30 02:13 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 03:47 AM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 08:54 AM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 10:18 AM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 12:04 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 12:38 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/30 01:02 PM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 08:09 PM |
Sandy Bridge CPU article online | mpx | 2010/09/30 12:40 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 01:00 PM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 08:44 PM |
Sandy Bridge CPU article online | David Hess | 2010/09/30 10:36 AM |
Sandy Bridge CPU article online | someone | 2010/09/30 11:23 AM |
Sandy Bridge CPU article online | mpx | 2010/09/30 01:50 PM |
wii lesson | Michael S | 2010/09/30 02:12 PM |
wii lesson | Dan Downs | 2010/09/30 03:33 PM |
wii lesson | Kevin G | 2010/10/01 12:27 AM |
wii lesson | Rohit | 2010/10/01 07:53 AM |
wii lesson | Kevin G | 2010/10/02 03:30 AM |
wii lesson | mpx | 2010/10/01 09:02 AM |
wii lesson | IntelUser2000 | 2010/10/01 09:31 AM |
GPUs and games | David Kanter | 2010/09/30 08:17 PM |
GPUs and games | hobold | 2010/10/01 05:27 AM |
GPUs and games | anonymous | 2010/10/01 06:35 AM |
GPUs and games | Gabriele Svelto | 2010/10/01 09:07 AM |
GPUs and games | Linus Torvalds | 2010/10/01 10:41 AM |
GPUs and games | Anon | 2010/10/01 11:23 AM |
Can Intel do *this* ??? | Mark Roulo | 2010/10/03 03:17 PM |
Can Intel do *this* ??? | Anon | 2010/10/03 03:29 PM |
Can Intel do *this* ??? | Mark Roulo | 2010/10/03 03:55 PM |
Can Intel do *this* ??? | Anon | 2010/10/03 05:45 PM |
Can Intel do *this* ??? | Ian Ameline | 2010/10/03 10:35 PM |
Graphics, IGPs, and Cache | Joe | 2010/10/10 09:51 AM |
Graphics, IGPs, and Cache | Anon | 2010/10/10 10:18 PM |
Graphics, IGPs, and Cache | Rohit | 2010/10/11 06:14 AM |
Graphics, IGPs, and Cache | hobold | 2010/10/11 06:43 AM |
Maybe the IGPU doesn't load into the L3 | Mark Roulo | 2010/10/11 08:05 AM |
Graphics, IGPs, and Cache | David Kanter | 2010/10/11 09:01 AM |
Can Intel do *this* ??? | Gabriele Svelto | 2010/10/04 12:31 AM |
Kanter's Law. | Ian Ameline | 2010/10/01 02:05 PM |
Kanter's Law. | David Kanter | 2010/10/01 02:18 PM |
Kanter's Law. | Ian Ameline | 2010/10/01 02:33 PM |
Kanter's Law. | Kevin G | 2010/10/01 04:19 PM |
Kanter's Law. | IntelUser2000 | 2010/10/01 10:36 PM |
Kanter's Law. | Kevin G | 2010/10/02 03:15 AM |
Kanter's Law. | IntelUser2000 | 2010/10/02 02:35 PM |
Wii vs pc's | Rohit | 2010/10/01 07:34 PM |
Wii vs pc's | Gabriele Svelto | 2010/10/01 11:54 PM |
GPUs and games | mpx | 2010/10/02 11:30 AM |
GPUs and games | Foo_ | 2010/10/02 04:03 PM |
GPUs and games | mpx | 2010/10/03 11:29 AM |
GPUs and games | Foo_ | 2010/10/03 01:52 PM |
GPUs and games | mpx | 2010/10/03 03:29 PM |
GPUs and games | Anon | 2010/10/03 03:49 PM |
GPUs and games | mpx | 2010/10/04 11:42 AM |
GPUs and games | MS | 2010/10/04 02:51 PM |
GPUs and games | Anon | 2010/10/04 08:29 PM |
persistence of vision | hobold | 2010/10/04 11:47 PM |
GPUs and games | mpx | 2010/10/05 12:51 AM |
GPUs and games | MS | 2010/10/05 06:49 AM |
GPUs and games | Jack | 2010/10/05 11:17 AM |
GPUs and games | MS | 2010/10/05 05:19 PM |
GPUs and games | Jack | 2010/10/05 11:11 AM |
GPUs and games | mpx | 2010/10/05 12:51 PM |
GPUs and games | David Kanter | 2010/10/06 09:04 AM |
GPUs and games | jack | 2010/10/06 09:34 PM |
GPUs and games | Linus Torvalds | 2010/10/05 07:29 AM |
GPUs and games | Foo_ | 2010/10/04 04:49 AM |
GPUs and games | Jeremiah | 2010/10/08 10:58 AM |
GPUs and games | MS | 2010/10/08 01:37 PM |
GPUs and games | Salvatore De Dominicis | 2010/10/04 01:41 AM |
GPUs and games | Kevin G | 2010/10/05 02:13 PM |
GPUs and games | mpx | 2010/10/03 11:36 AM |
GPUs and games | David Kanter | 2010/10/04 07:08 AM |
GPUs and games | Kevin G | 2010/10/04 10:38 AM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 09:19 PM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 12:06 PM |
Sandy Bridge CPU article online | rwessel | 2010/09/30 02:29 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/30 03:06 PM |
Sandy Bridge CPU article online | rwessel | 2010/09/30 06:55 PM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 03:53 AM |
Sandy Bridge CPU article online | rwessel | 2010/10/01 08:30 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 09:31 AM |
Sandy Bridge CPU article online | rwessel | 2010/10/01 10:56 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:28 PM |
Sandy Bridge CPU article online | Ricardo B | 2010/10/02 05:38 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/02 06:59 PM |
which bus more wasteful | Michael S | 2010/10/02 10:38 AM |
which bus more wasteful | rwessel | 2010/10/02 07:15 PM |
Sandy Bridge CPU article online | Ricardo B | 2010/10/01 10:08 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:31 PM |
Sandy Bridge CPU article online | Andi Kleen | 2010/10/01 11:55 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:32 PM |
Sandy Bridge CPU article online | kdg | 2010/10/01 11:26 AM |
Sandy Bridge CPU article online | Anon | 2010/10/01 11:33 AM |
Analog display out? | David Kanter | 2010/10/01 01:05 PM |
Analog display out? | mpx | 2010/10/02 11:46 AM |
Analog display out? | Anon | 2010/10/03 03:26 PM |
Digital is expensive! | David Kanter | 2010/10/03 06:36 PM |
Digital is expensive! | Anon | 2010/10/03 08:07 PM |
Digital is expensive! | David Kanter | 2010/10/03 10:02 PM |
Digital is expensive! | Steve Underwood | 2010/10/04 03:52 AM |
Digital is expensive! | David Kanter | 2010/10/04 07:03 AM |
Digital is expensive! | anonymous | 2010/10/04 07:11 AM |
Digital is not very expensive! | Steve Underwood | 2010/10/04 06:08 PM |
Digital is not very expensive! | Anon | 2010/10/04 08:33 PM |
Digital is not very expensive! | Steve Underwood | 2010/10/04 11:03 PM |
Digital is not very expensive! | mpx | 2010/10/05 01:10 PM |
Digital is not very expensive! | Gabriele Svelto | 2010/10/05 12:24 AM |
Digital is expensive! | jal142 | 2010/10/04 11:46 AM |
Digital is expensive! | mpx | 2010/10/04 01:04 AM |
Digital is expensive! | Gabriele Svelto | 2010/10/04 03:28 AM |
Digital is expensive! | Mark Christiansen | 2010/10/04 03:12 PM |
Analog display out? | slacker | 2010/10/03 06:44 PM |
Analog display out? | Anon | 2010/10/03 08:05 PM |
Analog display out? | Steve Underwood | 2010/10/04 03:48 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:37 PM |
Sandy Bridge CPU article online | slacker | 2010/10/02 02:53 PM |
Sandy Bridge CPU article online | David Hess | 2010/10/02 06:49 PM |
memory bandwith | Max | 2010/09/30 12:19 PM |
memory bandwith | Anon | 2010/10/01 11:28 AM |
memory bandwith | Jack | 2010/10/01 07:45 PM |
memory bandwith | Anon | 2010/10/03 03:19 PM |
Sandy Bridge CPU article online | PiedPiper | 2010/09/30 07:05 PM |
Sandy Bridge CPU article online | Matt Sayler | 2010/09/29 04:38 PM |
Sandy Bridge CPU article online | Jack | 2010/09/29 09:39 PM |
Sandy Bridge CPU article online | mpx | 2010/09/30 12:24 AM |
Sandy Bridge CPU article online | passer | 2010/09/30 03:15 AM |
Sandy Bridge CPU article online | mpx | 2010/09/30 03:47 AM |
Sandy Bridge CPU article online | passer | 2010/09/30 04:25 AM |
SB and web browsing | Rohit | 2010/09/30 06:47 AM |
SB and web browsing | David Hess | 2010/09/30 07:10 AM |
SB and web browsing | MS | 2010/09/30 10:21 AM |
SB and web browsing | passer | 2010/09/30 10:26 AM |
SB and web browsing | MS | 2010/10/02 06:41 PM |
SB and web browsing | Rohit | 2010/10/01 08:02 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/30 08:35 AM |
Sandy Bridge CPU article online | Jack | 2010/09/30 10:40 PM |
processor evolution | hobold | 2010/09/29 02:16 PM |
processor evolution | Foo_ | 2010/09/30 06:10 AM |
processor evolution | Jack | 2010/09/30 07:07 PM |
3D gaming as GPGPU app | hobold | 2010/10/01 04:59 AM |
3D gaming as GPGPU app | Jack | 2010/10/01 07:39 PM |
processor evolution | hobold | 2010/10/01 04:35 AM |
processor evolution | David Kanter | 2010/10/01 10:02 AM |
processor evolution | Anon | 2010/10/01 11:46 AM |
Display | David Kanter | 2010/10/01 01:26 PM |
Display | Rohit | 2010/10/02 02:56 AM |
Display | Linus Torvalds | 2010/10/02 07:40 AM |
Display | rwessel | 2010/10/02 08:58 AM |
Display | sJ | 2010/10/02 10:28 PM |
Display | rwessel | 2010/10/03 08:38 AM |
Display | Anon | 2010/10/03 03:06 PM |
Display tech and compute are different | David Kanter | 2010/10/03 06:33 PM |
Display tech and compute are different | Anon | 2010/10/03 08:16 PM |
Display tech and compute are different | David Kanter | 2010/10/03 10:00 PM |
Display tech and compute are different | hobold | 2010/10/04 01:40 AM |
Display | ? | 2010/10/03 03:02 AM |
Display | Linus Torvalds | 2010/10/03 10:18 AM |
Display | Richard Cownie | 2010/10/03 11:12 AM |
Display | Linus Torvalds | 2010/10/03 12:16 PM |
Display | slacker | 2010/10/03 07:35 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/04 07:06 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/04 11:44 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/04 02:59 PM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/04 03:13 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/04 08:58 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/05 01:39 AM |
current V12 engines with >6.0 displacement | MS | 2010/10/05 06:57 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/05 01:20 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/05 09:26 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 05:39 AM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 01:22 PM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/06 03:07 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 03:56 PM |
current V12 engines with >6.0 displacement | rwessel | 2010/10/06 03:30 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 03:53 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/07 01:32 PM |
current V12 engines with >6.0 displacement | rwessel | 2010/10/07 07:54 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 09:02 PM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | slacker | 2010/10/06 07:20 PM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | Ricardo B | 2010/10/07 01:32 AM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | slacker | 2010/10/07 08:15 AM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | Ricardo B | 2010/10/07 10:51 AM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 05:03 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 06:26 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 11:15 PM |
current V12 engines with >6.0 displacement | Howard Chu | 2010/10/07 02:16 PM |
current V12 engines with >6.0 displacement | Anon | 2010/10/05 10:31 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 05:55 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/06 06:15 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 06:34 AM |
I wonder is there any tech area that this forum doesn't have an opinion on (NT) | Rob Thorpe | 2010/10/06 10:11 AM |
Cunieform tablets | David Kanter | 2010/10/06 12:57 PM |
Cunieform tablets | Linus Torvalds | 2010/10/06 01:06 PM |
Ouch...maybe I should hire a new editor (NT) | David Kanter | 2010/10/06 04:38 PM |
Cunieform tablets | rwessel | 2010/10/06 03:41 PM |
Cunieform tablets | seni | 2010/10/07 10:56 AM |
Cunieform tablets | Howard Chu | 2010/10/07 01:44 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/06 06:10 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/06 10:44 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 07:55 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:51 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 07:38 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:33 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 09:04 PM |
Practical vehicles for commuting | Rob Thorpe | 2010/10/08 05:50 AM |
Practical vehicles for commuting | Gabriele Svelto | 2010/10/08 06:05 AM |
Practical vehicles for commuting | Rob Thorpe | 2010/10/08 06:21 AM |
Practical vehicles for commuting | j | 2010/10/08 02:20 PM |
Practical vehicles for commuting | Rob Thorpe | 2010/12/09 07:00 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/08 10:14 AM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/07 01:23 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/07 04:08 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 05:41 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 08:05 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:52 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/08 07:52 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 11:28 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 12:37 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/07 01:37 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/05 02:02 AM |
Display | Linus Torvalds | 2010/10/04 10:39 AM |
Display | Gabriele Svelto | 2010/10/05 12:34 AM |
Display | Richard Cownie | 2010/10/04 06:22 AM |
Display | anon | 2010/10/04 09:22 PM |
Display | Richard Cownie | 2010/10/05 06:42 AM |
Display | mpx | 2010/10/03 11:55 AM |
Display | rcf | 2010/10/03 01:12 PM |
Display | mpx | 2010/10/03 02:36 PM |
Display | rcf | 2010/10/03 05:36 PM |
Display | Ricardo B | 2010/10/04 02:50 PM |
Display | gallier2 | 2010/10/05 03:44 AM |
Display | David Hess | 2010/10/05 05:21 AM |
Display | gallier2 | 2010/10/05 08:21 AM |
Display | David Hess | 2010/10/03 11:21 PM |
Display | rcf | 2010/10/04 08:06 AM |
Display | David Kanter | 2010/10/03 01:54 PM |
Alternative integration | Paul A. Clayton | 2010/10/06 08:51 AM |
Display | slacker | 2010/10/03 07:26 PM |
Display & marketing & analogies | ? | 2010/10/04 02:33 AM |
Display & marketing & analogies | kdg | 2010/10/04 06:00 AM |
Display | Kevin G | 2010/10/02 09:49 AM |
Display | Anon | 2010/10/03 03:43 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/29 03:17 PM |
Sandy Bridge CPU article online | Jack | 2010/09/28 06:27 AM |
Sandy Bridge CPU article online | IntelUser2000 | 2010/09/28 03:07 AM |
Sandy Bridge CPU article online | mpx | 2010/09/28 12:34 PM |
Sandy Bridge CPU article online | Aaron Spink | 2010/09/28 01:28 PM |
Sandy Bridge CPU article online | JoshW | 2010/09/28 02:13 PM |
Sandy Bridge CPU article online | mpx | 2010/09/28 02:54 PM |
Sandy Bridge CPU article online | Foo_ | 2010/09/29 01:19 AM |
Sandy Bridge CPU article online | mpx | 2010/09/29 03:06 AM |
Sandy Bridge CPU article online | JS | 2010/09/29 03:42 AM |
Sandy Bridge CPU article online | mpx | 2010/09/29 04:03 AM |
Sandy Bridge CPU article online | Foo_ | 2010/09/29 05:55 AM |
Sandy Bridge CPU article online | ajensen | 2010/09/28 12:19 AM |
Sandy Bridge CPU article online | Ian Ollmann | 2010/09/28 04:52 PM |
Sandy Bridge CPU article online | a reader | 2010/09/28 05:05 PM |
Sandy Bridge CPU article online | ajensen | 2010/09/28 11:35 PM |
Updated: Sandy Bridge CPU article | David Kanter | 2010/10/01 05:11 AM |
Updated: Sandy Bridge CPU article | anon | 2011/01/07 09:55 PM |
Updated: Sandy Bridge CPU article | Eric Bron | 2011/01/08 03:29 AM |
Updated: Sandy Bridge CPU article | anon | 2011/01/11 11:24 PM |
Updated: Sandy Bridge CPU article | anon | 2011/01/15 11:21 AM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anon | 2011/01/16 11:22 PM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anonymous | 2011/01/17 02:04 AM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anon | 2011/01/17 07:12 AM |
I can try.... | David Kanter | 2011/01/18 03:54 PM |
I can try.... | anon | 2011/01/18 08:07 PM |
I can try.... | David Kanter | 2011/01/18 11:24 PM |
I can try.... | anon | 2011/01/19 07:51 AM |
Wider fetch than execute makes sense | Paul A. Clayton | 2011/01/19 08:53 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/04 07:29 AM |
Sandy Bridge CPU article online | Seni | 2011/01/04 09:07 PM |
Sandy Bridge CPU article online | hobold | 2011/01/04 11:26 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 02:01 AM |
software assist exceptions | hobold | 2011/01/05 04:36 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 01:58 AM |
Sandy Bridge CPU article online | anon | 2011/01/05 04:51 AM |
Sandy Bridge CPU article online | Seni | 2011/01/05 08:53 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 09:03 AM |
Sandy Bridge CPU article online | anon | 2011/01/05 04:14 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 04:50 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/05 05:00 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 07:26 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/05 07:50 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 08:39 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 03:50 PM |
permuting vector elements | hobold | 2011/01/05 05:03 PM |
permuting vector elements | Nicolas Capens | 2011/01/05 06:01 PM |
permuting vector elements | Nicolas Capens | 2011/01/06 08:27 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/11 11:33 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/11 01:51 PM |
Sandy Bridge CPU article online | hobold | 2011/01/11 02:11 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/11 06:07 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/12 03:25 AM |
Sandy Bridge CPU article online | hobold | 2011/01/12 05:03 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/12 11:27 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/13 02:38 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/13 03:32 AM |
Sandy Bridge CPU article online | hobold | 2011/01/13 01:53 PM |
What happened to VPERMIL2PS? | Michael S | 2011/01/13 03:46 AM |
What happened to VPERMIL2PS? | Eric Bron | 2011/01/13 06:46 AM |
Lower cost permute | Paul A. Clayton | 2011/01/13 12:11 PM |
Sandy Bridge CPU article online | anon | 2011/01/25 06:31 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/12 06:34 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/13 07:38 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/15 09:47 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/16 03:13 AM |
And just to make a further example | Gabriele Svelto | 2011/01/16 04:24 AM |
Sandy Bridge CPU article online | mpx | 2011/01/16 01:27 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/25 02:56 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/25 04:11 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/26 08:49 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/26 04:35 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/27 02:51 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/27 02:40 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/28 03:24 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/28 03:49 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/30 02:11 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/31 03:43 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/01 04:02 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/01 04:28 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/01 04:43 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/28 07:14 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/01 02:58 AM |
Sandy Bridge CPU article online | EduardoS | 2011/02/01 02:36 PM |
Sandy Bridge CPU article online | anon | 2011/02/01 04:56 PM |
Sandy Bridge CPU article online | EduardoS | 2011/02/01 09:17 PM |
Sandy Bridge CPU article online | anon | 2011/02/01 10:13 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/02 04:08 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/02 04:26 AM |
Sandy Bridge CPU article online | kalmaegi | 2011/02/01 09:29 AM |
SW Rasterization | David Kanter | 2011/01/27 05:18 PM |
Lower pin count memory | iz | 2011/01/27 09:19 PM |
Lower pin count memory | David Kanter | 2011/01/27 09:25 PM |
Lower pin count memory | iz | 2011/01/27 11:31 PM |
Lower pin count memory | David Kanter | 2011/01/27 11:52 PM |
Lower pin count memory | iz | 2011/01/28 12:28 AM |
Lower pin count memory | David Kanter | 2011/01/28 01:05 AM |
Lower pin count memory | iz | 2011/01/28 03:55 AM |
Lower pin count memory | David Hess | 2011/01/28 01:15 PM |
Lower pin count memory | David Kanter | 2011/01/28 01:57 PM |
Lower pin count memory | iz | 2011/01/28 05:20 PM |
Two years later | ForgotPants | 2013/10/26 11:33 AM |
Two years later | anon | 2013/10/26 11:36 AM |
Two years later | Exophase | 2013/10/26 12:56 PM |
Two years later | David Hess | 2013/10/26 05:05 PM |
Herz is totally the thing you DON*T care. | Jouni Osmala | 2013/10/27 01:48 AM |
Herz is totally the thing you DON*T care. | EduardoS | 2013/10/27 07:00 AM |
Herz is totally the thing you DON*T care. | Michael S | 2013/10/27 07:45 AM |
Two years later | someone | 2013/10/28 07:21 AM |
Lower pin count memory | Martin Høyer Kristiansen | 2011/01/28 01:41 AM |
Lower pin count memory | iz | 2011/01/28 03:07 AM |
Lower pin count memory | Darrell Coker | 2011/01/27 10:39 PM |
Lower pin count memory | iz | 2011/01/28 12:20 AM |
Lower pin count memory | Darrell Coker | 2011/01/28 06:07 PM |
Lower pin count memory | iz | 2011/01/28 11:57 PM |
Lower pin count memory | Darrell Coker | 2011/01/29 02:21 AM |
Lower pin count memory | iz | 2011/01/31 10:28 PM |
SW Rasterization | Nicolas Capens | 2011/02/02 08:48 AM |
SW Rasterization | Eric Bron | 2011/02/02 09:37 AM |
SW Rasterization | Nicolas Capens | 2011/02/02 04:35 PM |
SW Rasterization | Eric Bron | 2011/02/02 05:11 PM |
SW Rasterization | Eric Bron | 2011/02/03 02:13 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 07:57 AM |
SW Rasterization | Eric Bron | 2011/02/04 08:50 AM |
erratum | Eric Bron | 2011/02/04 08:58 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 05:25 PM |
SW Rasterization | David Kanter | 2011/02/04 05:33 PM |
SW Rasterization | anon | 2011/02/04 06:04 PM |
SW Rasterization | Nicolas Capens | 2011/02/05 03:39 PM |
SW Rasterization | David Kanter | 2011/02/05 05:07 PM |
SW Rasterization | Nicolas Capens | 2011/02/05 11:39 PM |
SW Rasterization | Eric Bron | 2011/02/04 10:55 AM |
Comments pt 1 | David Kanter | 2011/02/02 01:08 PM |
Comments pt 1 | Eric Bron | 2011/02/02 03:16 PM |
Comments pt 1 | Gabriele Svelto | 2011/02/03 01:37 AM |
Comments pt 1 | Eric Bron | 2011/02/03 02:36 AM |
Comments pt 1 | Nicolas Capens | 2011/02/03 11:08 PM |
Comments pt 1 | Nicolas Capens | 2011/02/03 10:26 PM |
Comments pt 1 | Eric Bron | 2011/02/04 03:33 AM |
Comments pt 1 | Nicolas Capens | 2011/02/04 05:24 AM |
example code | Eric Bron | 2011/02/04 04:51 AM |
example code | Nicolas Capens | 2011/02/04 08:24 AM |
example code | Eric Bron | 2011/02/04 08:36 AM |
example code | Nicolas Capens | 2011/02/05 11:43 PM |
Comments pt 1 | Rohit | 2011/02/04 12:43 PM |
Comments pt 1 | Nicolas Capens | 2011/02/04 05:05 PM |
Comments pt 1 | David Kanter | 2011/02/04 05:36 PM |
Comments pt 1 | Nicolas Capens | 2011/02/05 02:45 PM |
Comments pt 1 | Eric Bron | 2011/02/05 04:13 PM |
Comments pt 1 | Nicolas Capens | 2011/02/05 11:52 PM |
Comments pt 1 | Eric Bron | 2011/02/06 01:31 AM |
Comments pt 1 | Nicolas Capens | 2011/02/06 04:06 PM |
Comments pt 1 | Eric Bron | 2011/02/07 03:12 AM |
The need for gather/scatter support | Nicolas Capens | 2011/02/10 10:07 AM |
The need for gather/scatter support | Eric Bron | 2011/02/11 03:11 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/13 03:39 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 07:46 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:48 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 09:32 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 10:07 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 09:00 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:49 AM |
Gather/scatter performance data | Eric Bron | 2011/02/15 02:23 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 05:06 PM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:52 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 09:43 AM |
SW Rasterization - a long way off | Rohit | 2011/02/02 01:17 PM |
SW Rasterization - a long way off | Nicolas Capens | 2011/02/04 03:59 AM |
CPU only rendering - a long way off | Rohit | 2011/02/04 11:52 AM |
CPU only rendering - a long way off | Nicolas Capens | 2011/02/04 07:15 PM |
CPU only rendering - a long way off | Rohit | 2011/02/05 02:00 AM |
CPU only rendering - a long way off | Nicolas Capens | 2011/02/05 09:45 PM |
CPU only rendering - a long way off | David Kanter | 2011/02/06 09:51 PM |
CPU only rendering - a long way off | Gian-Carlo Pascutto | 2011/02/07 12:22 AM |
Encryption | David Kanter | 2011/02/07 01:18 AM |
Encryption | Nicolas Capens | 2011/02/07 07:51 AM |
Encryption | David Kanter | 2011/02/07 11:50 AM |
Encryption | Nicolas Capens | 2011/02/08 10:26 AM |
CPUs are latency optimized | David Kanter | 2011/02/08 11:38 AM |
efficient compiler on an efficient GPU real today. | sJ | 2011/02/08 11:29 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/09 09:49 PM |
CPUs are latency optimized | Eric Bron | 2011/02/10 12:49 AM |
CPUs are latency optimized | Antti-Ville Tuunainen | 2011/02/10 06:16 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/10 07:04 AM |
CPUs are latency optimized | Eric Bron | 2011/02/10 07:48 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/10 01:31 PM |
CPUs are latency optimized | Eric Bron | 2011/02/11 02:43 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/11 07:31 AM |
CPUs are latency optimized | EduardoS | 2011/02/10 05:29 PM |
CPUs are latency optimized | Anon | 2011/02/10 06:40 PM |
CPUs are latency optimized | David Kanter | 2011/02/10 08:33 PM |
CPUs are latency optimized | EduardoS | 2011/02/11 02:18 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/11 05:56 AM |
CPUs are latency optimized | Rohit | 2011/02/11 07:33 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/14 02:19 AM |
CPUs are latency optimized | Eric Bron | 2011/02/14 03:23 AM |
CPUs are latency optimized | EduardoS | 2011/02/14 01:11 PM |
CPUs are latency optimized | David Kanter | 2011/02/11 02:45 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/15 05:22 AM |
CPUs are latency optimized | David Kanter | 2011/02/15 12:47 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/15 07:10 PM |
Have fun | David Kanter | 2011/02/15 10:04 PM |
Have fun | Nicolas Capens | 2011/02/17 03:59 AM |
Have fun | Brett | 2011/02/17 12:56 PM |
Have fun | Nicolas Capens | 2011/02/19 04:53 PM |
Have fun | Brett | 2011/02/20 06:08 PM |
Have fun | Brett | 2011/02/20 07:13 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/02/23 05:37 PM |
On-die storage to fight Amdahl | Brett | 2011/02/23 09:59 PM |
On-die storage to fight Amdahl | Brett | 2011/02/23 10:08 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/02/24 07:42 PM |
On-die storage to fight Amdahl | Rohit | 2011/02/25 11:02 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/03/09 06:53 PM |
On-die storage to fight Amdahl | Rohit | 2011/03/10 08:02 AM |
NVIDIA using tile based rendering? | Nathan Monson | 2011/03/11 07:58 PM |
NVIDIA using tile based rendering? | Rohit | 2011/03/12 04:29 AM |
NVIDIA using tile based rendering? | Nathan Monson | 2011/03/12 11:05 AM |
NVIDIA using tile based rendering? | Rohit | 2011/03/12 11:16 AM |
On-die storage to fight Amdahl | Brett | 2011/02/26 02:10 AM |
On-die storage to fight Amdahl | Nathan Monson | 2011/02/26 01:51 PM |
On-die storage to fight Amdahl | Brett | 2011/02/26 04:40 PM |
Convergence is inevitable | Nicolas Capens | 2011/03/09 08:22 PM |
Convergence is inevitable | Brett | 2011/03/09 10:59 PM |
Convergence is inevitable | Antti-Ville Tuunainen | 2011/03/10 03:34 PM |
Convergence is inevitable | Brett | 2011/03/10 09:39 PM |
Procedural texturing? | David Kanter | 2011/03/11 01:32 AM |
Procedural texturing? | hobold | 2011/03/11 03:59 AM |
Procedural texturing? | Dan Downs | 2011/03/11 09:28 AM |
Procedural texturing? | Mark Roulo | 2011/03/11 02:58 PM |
Procedural texturing? | Anon | 2011/03/11 06:11 PM |
Procedural texturing? | Nathan Monson | 2011/03/11 07:30 PM |
Procedural texturing? | Brett | 2011/03/15 07:45 AM |
Procedural texturing? | Seni | 2011/03/15 10:13 AM |
Procedural texturing? | Brett | 2011/03/15 11:45 AM |
Procedural texturing? | Seni | 2011/03/15 02:09 PM |
Procedural texturing? | Brett | 2011/03/11 10:02 PM |
Procedural texturing? | Brett | 2011/03/11 09:34 PM |
Procedural texturing? | Eric Bron | 2011/03/12 03:37 AM |
Convergence is inevitable | Jouni Osmala | 2011/03/09 11:28 PM |
Convergence is inevitable | Brett | 2011/04/05 05:08 PM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 05:23 AM |
Convergence is inevitable | none | 2011/04/07 07:03 AM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 10:34 AM |
Convergence is inevitable | anon | 2011/04/07 02:15 PM |
Convergence is inevitable | none | 2011/04/08 01:57 AM |
Convergence is inevitable | Brett | 2011/04/07 08:04 PM |
Convergence is inevitable | none | 2011/04/08 02:14 AM |
Gather implementation | David Kanter | 2011/04/08 12:01 PM |
RAM Latency | David Hess | 2011/04/07 08:22 AM |
RAM Latency | Brett | 2011/04/07 07:20 PM |
RAM Latency | Nicolas Capens | 2011/04/07 10:18 PM |
RAM Latency | Brett | 2011/04/08 05:33 AM |
RAM Latency | Nicolas Capens | 2011/04/10 02:23 PM |
RAM Latency | Rohit | 2011/04/08 06:57 AM |
RAM Latency | Nicolas Capens | 2011/04/10 01:23 PM |
RAM Latency | David Kanter | 2011/04/10 02:27 PM |
RAM Latency | Rohit | 2011/04/11 06:17 AM |
Convergence is inevitable | Eric Bron | 2011/04/07 09:46 AM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 09:50 PM |
Convergence is inevitable | Eric Bron | 2011/04/08 12:39 AM |
Flaws in PowerVR | Rohit | 2011/02/25 11:21 PM |
Flaws in PowerVR | Brett | 2011/02/26 12:37 AM |
Flaws in PowerVR | Paul | 2011/02/26 05:17 AM |
Have fun | David Kanter | 2011/02/18 12:52 PM |
Have fun | Michael S | 2011/02/19 12:12 PM |
Have fun | David Kanter | 2011/02/19 03:26 PM |
Have fun | Michael S | 2011/02/19 04:43 PM |
Have fun | anon | 2011/02/19 05:02 PM |
Have fun | Michael S | 2011/02/19 05:56 PM |
Have fun | anon | 2011/02/20 03:50 PM |
Have fun | EduardoS | 2011/02/20 02:44 PM |
Linear vs non-linear | EduardoS | 2011/02/20 02:55 PM |
Have fun | Michael S | 2011/02/20 04:19 PM |
Have fun | EduardoS | 2011/02/20 05:51 PM |
Have fun | Nicolas Capens | 2011/02/21 11:12 AM |
Have fun | Michael S | 2011/02/21 12:38 PM |
Have fun | Eric Bron | 2011/02/21 02:10 PM |
Have fun | Eric Bron | 2011/02/21 02:39 PM |
Have fun | Michael S | 2011/02/21 06:13 PM |
Have fun | Eric Bron | 2011/02/22 12:43 AM |
Have fun | Michael S | 2011/02/22 01:47 AM |
Have fun | Eric Bron | 2011/02/22 02:10 AM |
Have fun | Michael S | 2011/02/22 11:37 AM |
Have fun | anon | 2011/02/22 01:38 PM |
Have fun | EduardoS | 2011/02/22 03:49 PM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/23 06:37 PM |
Gather/scatter efficiency | anonymous | 2011/02/23 06:51 PM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/24 06:57 PM |
Gather/scatter efficiency | anonymous | 2011/02/24 07:16 PM |
Gather/scatter efficiency | Michael S | 2011/02/25 07:45 AM |
Gather implementation | David Kanter | 2011/02/25 05:34 PM |
Gather implementation | Michael S | 2011/02/26 10:40 AM |
Gather implementation | anon | 2011/02/26 11:52 AM |
Gather implementation | Michael S | 2011/02/26 12:16 PM |
Gather implementation | anon | 2011/02/26 11:22 PM |
Gather implementation | Michael S | 2011/02/27 07:23 AM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/28 03:14 PM |
Consider yourself ignored | David Kanter | 2011/02/22 01:05 AM |
one more anti-FMA flame. By me. | Michael S | 2011/02/16 07:40 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/16 08:30 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/16 09:15 AM |
one more anti-FMA flame. By me. | Nicolas Capens | 2011/02/17 06:27 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/17 07:42 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/17 05:46 PM |
Tarantula paper | Paul A. Clayton | 2011/02/18 12:38 AM |
Tarantula paper | Nicolas Capens | 2011/02/19 05:19 PM |
anti-FMA != anti-throughput or anti-SG | Eric Bron | 2011/02/18 01:48 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/20 03:46 PM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/20 05:00 PM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 04:05 AM |
Software pipelining on x86 | David Kanter | 2011/02/23 05:04 AM |
Software pipelining on x86 | JS | 2011/02/23 05:25 AM |
Software pipelining on x86 | Salvatore De Dominicis | 2011/02/23 08:37 AM |
Software pipelining on x86 | Jouni Osmala | 2011/02/23 09:10 AM |
Software pipelining on x86 | LeeMiller | 2011/02/23 10:07 PM |
Software pipelining on x86 | Nicolas Capens | 2011/02/24 03:17 PM |
Software pipelining on x86 | anonymous | 2011/02/24 07:04 PM |
Software pipelining on x86 | Nicolas Capens | 2011/02/28 09:27 AM |
Software pipelining on x86 | Antti-Ville Tuunainen | 2011/03/02 04:31 AM |
Software pipelining on x86 | Megol | 2011/03/02 12:55 PM |
Software pipelining on x86 | Geert Bosch | 2011/03/03 07:58 AM |
FMA benefits and latency predictions | David Kanter | 2011/02/25 05:14 PM |
FMA benefits and latency predictions | Antti-Ville Tuunainen | 2011/02/26 10:43 AM |
FMA benefits and latency predictions | Matt Waldhauer | 2011/02/27 06:42 AM |
FMA benefits and latency predictions | Nicolas Capens | 2011/03/09 06:11 PM |
FMA benefits and latency predictions | Rohit | 2011/03/10 08:11 AM |
FMA benefits and latency predictions | Eric Bron | 2011/03/10 09:30 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/23 05:19 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 07:50 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/23 10:37 AM |
FMA and beyond | Nicolas Capens | 2011/02/24 04:47 PM |
detour on terminology | hobold | 2011/02/24 07:08 PM |
detour on terminology | Nicolas Capens | 2011/02/28 02:24 PM |
detour on terminology | Eric Bron | 2011/03/01 02:38 AM |
detour on terminology | Michael S | 2011/03/01 05:03 AM |
detour on terminology | Eric Bron | 2011/03/01 05:39 AM |
detour on terminology | Michael S | 2011/03/01 08:33 AM |
detour on terminology | Eric Bron | 2011/03/01 09:34 AM |
erratum | Eric Bron | 2011/03/01 09:54 AM |
detour on terminology | Nicolas Capens | 2011/03/10 08:39 AM |
detour on terminology | Eric Bron | 2011/03/10 09:50 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 06:12 AM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 11:25 PM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/17 06:51 PM |
Tarantula vector unit well-integrated | Paul A. Clayton | 2011/02/18 12:38 AM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/19 02:17 PM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 02:09 AM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/20 09:55 AM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 01:39 PM |
anti-FMA != anti-throughput or anti-SG | EduardoS | 2011/02/20 02:35 PM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/21 08:12 AM |
anti-FMA != anti-throughput or anti-SG | anon | 2011/02/17 10:44 PM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/18 06:20 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/17 08:24 AM |
thanks | Michael S | 2011/02/17 04:56 PM |
CPUs are latency optimized | EduardoS | 2011/02/15 01:24 PM |
SwiftShader SNB test | Eric Bron | 2011/02/15 03:46 PM |
SwiftShader NHM test | Eric Bron | 2011/02/15 04:50 PM |
SwiftShader SNB test | Nicolas Capens | 2011/02/17 12:06 AM |
SwiftShader SNB test | Eric Bron | 2011/02/17 01:21 AM |
SwiftShader SNB test | Eric Bron | 2011/02/22 10:32 AM |
SwiftShader SNB test 2nd run | Eric Bron | 2011/02/22 10:51 AM |
SwiftShader SNB test 2nd run | Nicolas Capens | 2011/02/23 02:14 PM |
SwiftShader SNB test 2nd run | Eric Bron | 2011/02/23 02:42 PM |
Win7SP1 out but no AVX hype? | Michael S | 2011/02/24 03:14 AM |
Win7SP1 out but no AVX hype? | Eric Bron | 2011/02/24 03:39 AM |
CPUs are latency optimized | Eric Bron | 2011/02/15 08:02 AM |
CPUs are latency optimized | EduardoS | 2011/02/11 03:40 PM |
CPU only rendering - not a long way off | Nicolas Capens | 2011/02/07 06:45 AM |
CPU only rendering - not a long way off | David Kanter | 2011/02/07 12:09 PM |
CPU only rendering - not a long way off | anonymous | 2011/02/07 10:25 PM |
Sandy Bridge IGP EUs | David Kanter | 2011/02/07 11:22 PM |
Sandy Bridge IGP EUs | Hannes | 2011/02/08 05:59 AM |
SW Rasterization - Why? | Seni | 2011/02/02 02:53 PM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/10 03:12 PM |
Market reasons to ditch the IGP | Seni | 2011/02/11 05:42 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/16 04:29 AM |
Market reasons to ditch the IGP | Seni | 2011/02/16 01:39 PM |
An excellent post! | David Kanter | 2011/02/16 03:18 PM |
CPUs clock higher | Moritz | 2011/02/17 08:06 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/18 06:22 PM |
Market reasons to ditch the IGP | IntelUser2000 | 2011/02/18 07:20 PM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/21 02:42 PM |
Bad data (repeated) | David Kanter | 2011/02/22 12:21 AM |
Bad data (repeated) | none | 2011/02/22 03:04 AM |
13W or 8W? | Foo_ | 2011/02/22 06:00 AM |
13W or 8W? | Linus Torvalds | 2011/02/22 08:58 AM |
13W or 8W? | David Kanter | 2011/02/22 11:33 AM |
13W or 8W? | Mark Christiansen | 2011/02/22 02:47 PM |
Bigger picture | Nicolas Capens | 2011/02/24 06:33 PM |
Bigger picture | Nicolas Capens | 2011/02/24 08:06 PM |
20+ Watt | Nicolas Capens | 2011/02/24 08:18 PM |
<20W | David Kanter | 2011/02/25 01:13 PM |
>20W | Nicolas Capens | 2011/03/08 07:34 PM |
IGP is 3X more efficient | David Kanter | 2011/03/08 10:53 PM |
IGP is 3X more efficient | Eric Bron | 2011/03/09 02:44 AM |
>20W | Eric Bron | 2011/03/09 03:48 AM |
Specious data and claims are still specious | David Kanter | 2011/02/25 02:38 AM |
IGP power consumption, LRB samplers | Nicolas Capens | 2011/03/08 06:24 PM |
IGP power consumption, LRB samplers | EduardoS | 2011/03/08 06:52 PM |
IGP power consumption, LRB samplers | Rohit | 2011/03/09 07:42 AM |
Market reasons to ditch the IGP | none | 2011/02/22 02:58 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/24 06:43 PM |
Market reasons to ditch the IGP | slacker | 2011/02/22 02:32 PM |
Market reasons to ditch the IGP | Seni | 2011/02/18 09:51 PM |
Correction - 28 comparators, not 36. (NT) | Seni | 2011/02/18 10:03 PM |
Market reasons to ditch the IGP | Gabriele Svelto | 2011/02/19 01:49 AM |
Market reasons to ditch the IGP | Seni | 2011/02/19 11:59 AM |
Market reasons to ditch the IGP | Exophase | 2011/02/20 10:43 AM |
Market reasons to ditch the IGP | EduardoS | 2011/02/19 10:13 AM |
Market reasons to ditch the IGP | Seni | 2011/02/19 11:46 AM |
The next revolution | Nicolas Capens | 2011/02/22 03:33 AM |
The next revolution | Gabriele Svelto | 2011/02/22 09:15 AM |
The next revolution | Eric Bron | 2011/02/22 09:48 AM |
The next revolution | Nicolas Capens | 2011/02/23 07:39 PM |
The next revolution | Gabriele Svelto | 2011/02/24 12:43 AM |
GPGPU content creation (or lack of it) | Nicolas Capens | 2011/02/28 07:39 AM |
GPGPU content creation (or lack of it) | The market begs to differ | 2011/03/01 06:32 AM |
GPGPU content creation (or lack of it) | Nicolas Capens | 2011/03/09 09:14 PM |
GPGPU content creation (or lack of it) | Gabriele Svelto | 2011/03/10 01:01 AM |
The market begs to differ | Gabriele Svelto | 2011/03/01 06:33 AM |
The next revolution | Anon | 2011/02/24 02:15 AM |
The next revolution | Nicolas Capens | 2011/02/28 02:34 PM |
The next revolution | Seni | 2011/02/22 02:02 PM |
The next revolution | Gabriele Svelto | 2011/02/23 06:27 AM |
The next revolution | Seni | 2011/02/23 09:03 AM |
The next revolution | Nicolas Capens | 2011/02/24 06:11 AM |
The next revolution | Seni | 2011/02/24 08:45 PM |
IGP sampler count | Nicolas Capens | 2011/03/03 05:19 AM |
Latency and throughput optimized cores | Nicolas Capens | 2011/03/07 03:28 PM |
The real reason no IGP /CPU converge. | Jouni Osmala | 2011/03/07 11:34 PM |
Still converging | Nicolas Capens | 2011/03/13 03:08 PM |
Homogeneous CPU advantages | Nicolas Capens | 2011/03/08 12:12 AM |
Homogeneous CPU advantages | Seni | 2011/03/08 09:23 AM |
Homogeneous CPU advantages | David Kanter | 2011/03/08 11:16 AM |
Homogeneous CPU advantages | Brett | 2011/03/09 03:37 AM |
Homogeneous CPU advantages | Jouni Osmala | 2011/03/09 12:27 AM |
SW Rasterization | firsttimeposter | 2011/02/03 11:18 PM |
SW Rasterization | Nicolas Capens | 2011/02/04 04:48 AM |
SW Rasterization | Eric Bron | 2011/02/04 05:14 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 08:36 AM |
SW Rasterization | Eric Bron | 2011/02/04 08:42 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/26 03:23 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/02/04 04:31 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/05 08:46 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/02/06 06:20 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/06 06:07 PM |
Sandy Bridge CPU article online | arch.comp | 2011/01/06 10:58 PM |
Sandy Bridge CPU article online | Seni | 2011/01/07 10:25 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 04:28 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 06:06 AM |
permuting vector elements (yet again) | hobold | 2011/01/05 05:15 PM |
permuting vector elements (yet again) | Nicolas Capens | 2011/01/06 06:11 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/05 12:46 PM |
wow ...! | hobold | 2011/01/05 05:19 PM |
wow ...! | Nicolas Capens | 2011/01/05 06:11 PM |
wow ...! | Eric Bron | 2011/01/05 10:46 PM |
compress LUT | Eric Bron | 2011/01/05 11:05 PM |
wow ...! | Michael S | 2011/01/06 02:25 AM |
wow ...! | Nicolas Capens | 2011/01/06 06:26 AM |
wow ...! | Eric Bron | 2011/01/06 09:08 AM |
wow ...! | Nicolas Capens | 2011/01/07 07:19 AM |
wow ...! | Steve Underwood | 2011/01/07 10:53 PM |
saturation | hobold | 2011/01/08 10:25 AM |
saturation | Steve Underwood | 2011/01/08 12:38 PM |
saturation | Michael S | 2011/01/08 01:05 PM |
128 bit floats | Brett | 2011/01/08 01:39 PM |
128 bit floats | Michael S | 2011/01/08 02:10 PM |
128 bit floats | Anil Maliyekkel | 2011/01/08 03:46 PM |
128 bit floats | Kevin G | 2011/02/27 11:15 AM |
128 bit floats | hobold | 2011/02/27 04:42 PM |
128 bit floats | Ian Ollmann | 2011/02/28 04:56 PM |
OpenCL FP accuracy | hobold | 2011/03/01 06:45 AM |
OpenCL FP accuracy | anon | 2011/03/01 08:03 PM |
OpenCL FP accuracy | hobold | 2011/03/02 03:53 AM |
OpenCL FP accuracy | Eric Bron | 2011/03/02 07:10 AM |
pet project | hobold | 2011/03/02 09:22 AM |
pet project | Anon | 2011/03/02 09:10 PM |
pet project | hobold | 2011/03/03 04:57 AM |
pet project | Eric Bron | 2011/03/03 02:29 AM |
pet project | hobold | 2011/03/03 05:14 AM |
pet project | Eric Bron | 2011/03/03 03:10 PM |
pet project | hobold | 2011/03/03 04:04 PM |
OpenCL and AMD | Vincent Diepeveen | 2011/03/07 01:44 PM |
OpenCL and AMD | Eric Bron | 2011/03/08 02:05 AM |
OpenCL and AMD | Vincent Diepeveen | 2011/03/08 08:27 AM |
128 bit floats | Michael S | 2011/02/27 04:46 PM |
128 bit floats | Anil Maliyekkel | 2011/02/27 06:14 PM |
saturation | Steve Underwood | 2011/01/17 04:42 AM |
wow ...! | hobold | 2011/01/06 05:05 PM |
Ring | Moritz | 2011/01/20 10:51 PM |
Ring | Antti-Ville Tuunainen | 2011/01/21 12:25 PM |
Ring | Moritz | 2011/01/23 01:38 AM |
Ring | Michael S | 2011/01/23 04:04 AM |
So fast | Moritz | 2011/01/23 07:57 AM |
So fast | David Kanter | 2011/01/23 10:05 AM |
Sandy Bridge CPU (L1D cache) | Gordon Ward | 2011/09/09 02:47 AM |
Sandy Bridge CPU (L1D cache) | David Kanter | 2011/09/09 04:19 PM |
Sandy Bridge CPU (L1D cache) | EduardoS | 2011/09/09 08:53 PM |
Sandy Bridge CPU (L1D cache) | Paul A. Clayton | 2011/09/10 05:12 AM |
Sandy Bridge CPU (L1D cache) | Michael S | 2011/09/10 09:41 AM |
Sandy Bridge CPU (L1D cache) | EduardoS | 2011/09/10 11:17 AM |
Address Ports on Sandy Bridge Scheduler | Victor | 2011/10/16 06:40 AM |
Address Ports on Sandy Bridge Scheduler | EduardoS | 2011/10/16 07:45 PM |
Address Ports on Sandy Bridge Scheduler | Megol | 2011/10/17 09:20 AM |
Address Ports on Sandy Bridge Scheduler | Victor | 2011/10/18 05:34 PM |
Benefits of early scheduling | Paul A. Clayton | 2011/10/18 06:53 PM |
Benefits of early scheduling | Victor | 2011/10/19 05:58 PM |
Consistency and invalidation ordering | Paul A. Clayton | 2011/10/20 04:43 AM |
Address Ports on Sandy Bridge Scheduler | John Upcroft | 2011/10/21 04:16 PM |
Address Ports on Sandy Bridge Scheduler | David Kanter | 2011/10/22 10:49 AM |
Address Ports on Sandy Bridge Scheduler | John Upcroft | 2011/10/26 01:24 PM |
Store TLB look-up at commit? | Paul A. Clayton | 2011/10/26 08:30 PM |
Store TLB look-up at commit? | Richard Scott | 2011/10/26 09:40 PM |
Just a guess | Paul A. Clayton | 2011/10/27 01:54 PM |