By: Nicolas Capens (nicolas.capens.delete@this.gmail.com), February 15, 2011 7:10 pm
Room: Moderated Discussions
Hi David,
David Kanter (dkanter@realworldtech.com) on 2/15/11 wrote:
---------------------------
>Nicolas Capens (nicolas.capens@gmail.com) on 2/15/11 wrote:
>---------------------------
>>David Kanter (dkanter@realworldtech.com) on 2/11/11 wrote:
>>---------------------------
>>>>That's exactly my point. The latency doesn't make or break >being thoughput-oriented.
>>>>Unless you want to imply that AMD's GPUs are less of a >throughput-oriented architecture than NVIDIA's?
>>>
>>>It's just one of many things.
>>
>>Then please sum up the "many things" that make a CPU not >capable of high *effective*
>>throughput for graphics and HPC workloads. Keep in mind >that a 6-core Sandy Bridge
>>with FMA would be capable of delivering 650 GFLOPS, while >the 12 EU IGP can only
>>do 130 GFLOPS. What sort of magic makes the latter, which >has lower theoretical
>>throughput and little or no latency optimizations, achieve >significantly better effective throughput?
>
>CPUs are designed for good throughput, but that's simply not their primary design
>target. If you don't believe me, let's look at some hard facts for single precision performance.
>
>SNB gets about 2.3GFLOP/W and 21.3GB/s memory bandwidth
>GF104 gets about 6GFLOP/mm2 and 115GB/s memory bandwidth
>Cayman gets about 10GFLOP/mm2 and 176GB/s memory bandwidth
>Cypress gets about 14GFLOP/mm2 and 160GB/s memory bandwidth
>
>That's about an order of magnitude difference between a best of breed CPU and GPU.
>You simply cannot look at that data and conclude that CPUs are equally good at
>throughput.
You're forgetting FMA and the area taken by the IGP. The CPU could have 3.2 GFLOPS/mm2. Sandy Bridge's IGP has a compute density of 3.1 GFLOPS/mm2. And that's theoretical throughput. We know AMD's architecture only achieve half of the effective throughput of NVIDIA's architecture, and even the latter can have a hard time keeping the ALUs fed. So they're not all that far apart at effective throughput.
Those discrete GPUs are also all significantly larger so no point in comparing their absolute bandwidth. Try maybe GF106 instead, it has 57.73 GB/s (and 2.5 GFLOPS/mm2). Next take into account that the CPU has large caches so it doesn't have to go to RAM that often. And last but not least, the IGP is limited to the same bandwidth as the CPU anyway.
And if we take power consumption into account we probably have to halve the frequency to approach the power consumption of the IGP, which also halves the GFLOPS/mm2. But that's fine, the total GFLOPS of the homogenous CPU is still higher. And the extra area has already been paid for anyway to make the CPU capable of running everything other than graphics as well. So we're looking at about a 2x disadvantage in effective thoughput density, but it's not stopping software rendering from becoming a viable graphics solution.
>Moreover, the reality is that the CPU in question has a pretty big
>power (and area) advantage due to using 32nm HK/MG vs. 40nm polysilicon.
Yes that's reality. By the time TSMC has mastered 28 nm Intel will be producing at 22 nm. And this gap isn't about the dissapear. But whether you like it or not, it helps the CPU to be good enough at throughput computing to take over the role of the IGP.
>Many of the design choices in CPUs will reduce perf/area, for example:
>
>1. 8T SRAMs for L1 cache
>2. High frequency operation
>3. Forwarding and bypass networks
>4. OOOE
>5. Microcode
>6. Branch prediction
>7. uop caches
>8. Coherency
>9. Large TLBs
>10. Larger SRAM cells for higher frequency
>11. Multi-ported (rather than banked) RFs
>12. Load-to-use latency from L1
>
>The list goes on...
Some of these improve effective throughput so they're not a loss. Others are vital to make the CPU capable of running the O.S. and any application, and that's largely paid for already. In comparison the GPU is utterly worthless on its own. So you really can't look at throughput density alone to assess whether or not a homogeneous architecture is viable.
>>Also note once more that a GeForce GT 420 has a TDP of 50 Watt, at practically
>>the same clock frequency as Sandy Bridge's IGP, while also only achieving 130 GFLOPS.
>>Mobile Sandy Bridge CPUs have a TDP of 45 Watt. Note that it can be further reduced
>>by clocking them lower, while still offering more GFLOPS >than the IGP.
>
>There are 4 cores in SNB, and 1 GPU. What's the area/power efficiency? The GPU
>doesn't use all 45W, even when running full throttle.
This site suggests otherwise: http://www.legionhardware.com/articles_pages/intel_core_i5_2500k_and_core_i7_2600k_sandy_bridge,14.html
>>Obviously FMA increases the power consumption of the CPU >as well, but the control
>>logic remains practically the same.
>
>Not really. It's a 3 or 4 operand instruction and requires substantially more
>work. But the area increase is less than the FLOP/s increase.
AVX already features 3 operand instructions, today.
>>So to power consumed by the control logic goes
>>down with every process node, while more of the power >budget is spent on actual
>>floating-point operations. At the same time GPUs have to >do the reverse. There's
>>no FMA to add and simply doubling the number of shader >cores does not double the
>>*effective* throughput. Instead they need to rely on >smarter scheduling or larger
>>register files and caches to compensate for the latency.
>
>Well, if you want to talk about effective throughput, then we need to come up with
>a mutually agreed upon workload that measures effective throughput. Theoretical
>FLOP/s are nice and easy to work with, albeit imperfect.
Crysis is a good starting point. Certainly way better than comparing theoretical throughput.
We should actually take future workloads into account as well. A CPU with FMA and gather/scatter can be used for a lot of throughput-oriented workloads the IGP would totally suck at. This adds value too. Even in combination with a powerful discrete graphics card, such a CPU would be much more interesting than a CPU without gather/scatter and an IGP which remains idle.
Anyhow, let's start with Crysis.
>>I believe you're greatly overestimating the power >consumption of the CPUs control
>>logic, compared to the GPUs control logic. It takes more >area to achieve ILP, that's
>>certainly true, but when you're only executing NOPs >there's practically no switching
>>activity. The power consumption is proportional to the >number of uops being processed.
>
>No it's not. Power consumption = C*F*V^2. C has to do with transistors switching
>which is only loosely correlated to uops. Some uops switch more than others.
You appear to have missed that I was talking about the control logic. The average switching activity for the control logic of different (arithmetic) uops is practically the same.
So what I was trying to say is that you pay the price of higher power consumption, when effectively achieving higher throughput. Or put another way: there are times when a GPU could be achieving higher effective performance/Watt if it spent some power extracting dynamic ILP.
It only partially compensates the CPUs power consumption, but sufficiently to make a future CPU with FMA and gather/scatter capable of taking on graphics. Note once more that the area investment would be an issue for GPUs, but with a CPU it's already paid for.
>>Dependent instruction latency is irrelevant to being >throughput oriented or not.
>
>You are 100% wrong here. The dependent integer operation latency is roughly 8X
>worse on a GPU than a CPU. That has a big cost in terms of area and power for CPUs,
>and it enables them to actually run general purpose workloads.
I'm not 100% wrong. If I was, then the GPU with the highest possible dependent instruction latency was the most efficient at throughput oriented workloads. But we both know this leads to register starvation and thus low effective throughput. Clearly you can't conclude anything from latency alone.
So how much of this 8x latency difference you claim is actually due to ALU lantecy? Note that on a CPU even an integer addition and multiplication have different latency (1 and 4), due to forwarding. So you can't simply look at the smallest latency and say the CPU is massively latency optimized, to the point where it sacrifices lots of effective throughput. If an add took 4 cycles instead, would that make the CPU 4 times more throughput-oriented? Obviously not, so likewise GPUs that spend most of the latency outside the ALUs aren't that much more throughput optimized.
Or in other words, a forwarding network massively reduces latency but that doesn't mean it required proportional area or power. And some of it is compensated by enabling the use of a smaller register file, reducing the number of threads to schedule, reducing cache pollution, increasing Amdahl's speedup factor, etc.
>>>>>Anyway, long latency instructions are the best case for >>GPUs, the reason CPUs are
>>>>>clocked at 3GHz+ and hav deep OoO buffers is the >>integer operations where GPUs are, what? 30 times slower?
>>>>
>>>>Still not proving this is relevant to being throughput-oriented or not.
>>>
>>>Actually it does. CPUs are simply the best for latency sensitive workloads. GPUs
>>>are the best for some throughput sensitive workloads.
>>
>>It's clear by now that this "30 times slower" was yet >another prejudice. So calling
>>things "the best" based on this misinformation is >worthless.
>
>Actually, it's not too far off. As you said, the latency for an Nvidia integer
>operation is about 24 cycles. So the latency of a pair of dependent ALU ops is
>roughly 48 cycles @ 1.5GHz (32nm). On a CPU, that would be 2 cycles @ 3.4GHz (~0.6ns).
>That's actually higher than 30X.
>
>Even ATI is ~20ns for dependent ALU ops.
>
>Anyway, you just need to look at the data. The conclusions are obvious.
Only incomplete or irrelevant conclusions can be drawn from looking at one data point alone. 30x higher dependent instruction issue lantency is not a feat by any means and can't be used to determine effective throughput performance.
The viability of software rendering for a CPU with FMA and gather/scatter is affected by many more aspects as a whole. Analysing the data in depth shows that the 'gap' is nowhere near an order of magnitude as you're trying to imply, and the value of a homogenous architecture is greater than that of a CPU+IGP. Plus things are converging as well.
Take care,
Nicolas
David Kanter (dkanter@realworldtech.com) on 2/15/11 wrote:
---------------------------
>Nicolas Capens (nicolas.capens@gmail.com) on 2/15/11 wrote:
>---------------------------
>>David Kanter (dkanter@realworldtech.com) on 2/11/11 wrote:
>>---------------------------
>>>>That's exactly my point. The latency doesn't make or break >being thoughput-oriented.
>>>>Unless you want to imply that AMD's GPUs are less of a >throughput-oriented architecture than NVIDIA's?
>>>
>>>It's just one of many things.
>>
>>Then please sum up the "many things" that make a CPU not >capable of high *effective*
>>throughput for graphics and HPC workloads. Keep in mind >that a 6-core Sandy Bridge
>>with FMA would be capable of delivering 650 GFLOPS, while >the 12 EU IGP can only
>>do 130 GFLOPS. What sort of magic makes the latter, which >has lower theoretical
>>throughput and little or no latency optimizations, achieve >significantly better effective throughput?
>
>CPUs are designed for good throughput, but that's simply not their primary design
>target. If you don't believe me, let's look at some hard facts for single precision performance.
>
>SNB gets about 2.3GFLOP/W and 21.3GB/s memory bandwidth
>GF104 gets about 6GFLOP/mm2 and 115GB/s memory bandwidth
>Cayman gets about 10GFLOP/mm2 and 176GB/s memory bandwidth
>Cypress gets about 14GFLOP/mm2 and 160GB/s memory bandwidth
>
>That's about an order of magnitude difference between a best of breed CPU and GPU.
>You simply cannot look at that data and conclude that CPUs are equally good at
>throughput.
You're forgetting FMA and the area taken by the IGP. The CPU could have 3.2 GFLOPS/mm2. Sandy Bridge's IGP has a compute density of 3.1 GFLOPS/mm2. And that's theoretical throughput. We know AMD's architecture only achieve half of the effective throughput of NVIDIA's architecture, and even the latter can have a hard time keeping the ALUs fed. So they're not all that far apart at effective throughput.
Those discrete GPUs are also all significantly larger so no point in comparing their absolute bandwidth. Try maybe GF106 instead, it has 57.73 GB/s (and 2.5 GFLOPS/mm2). Next take into account that the CPU has large caches so it doesn't have to go to RAM that often. And last but not least, the IGP is limited to the same bandwidth as the CPU anyway.
And if we take power consumption into account we probably have to halve the frequency to approach the power consumption of the IGP, which also halves the GFLOPS/mm2. But that's fine, the total GFLOPS of the homogenous CPU is still higher. And the extra area has already been paid for anyway to make the CPU capable of running everything other than graphics as well. So we're looking at about a 2x disadvantage in effective thoughput density, but it's not stopping software rendering from becoming a viable graphics solution.
>Moreover, the reality is that the CPU in question has a pretty big
>power (and area) advantage due to using 32nm HK/MG vs. 40nm polysilicon.
Yes that's reality. By the time TSMC has mastered 28 nm Intel will be producing at 22 nm. And this gap isn't about the dissapear. But whether you like it or not, it helps the CPU to be good enough at throughput computing to take over the role of the IGP.
>Many of the design choices in CPUs will reduce perf/area, for example:
>
>1. 8T SRAMs for L1 cache
>2. High frequency operation
>3. Forwarding and bypass networks
>4. OOOE
>5. Microcode
>6. Branch prediction
>7. uop caches
>8. Coherency
>9. Large TLBs
>10. Larger SRAM cells for higher frequency
>11. Multi-ported (rather than banked) RFs
>12. Load-to-use latency from L1
>
>The list goes on...
Some of these improve effective throughput so they're not a loss. Others are vital to make the CPU capable of running the O.S. and any application, and that's largely paid for already. In comparison the GPU is utterly worthless on its own. So you really can't look at throughput density alone to assess whether or not a homogeneous architecture is viable.
>>Also note once more that a GeForce GT 420 has a TDP of 50 Watt, at practically
>>the same clock frequency as Sandy Bridge's IGP, while also only achieving 130 GFLOPS.
>>Mobile Sandy Bridge CPUs have a TDP of 45 Watt. Note that it can be further reduced
>>by clocking them lower, while still offering more GFLOPS >than the IGP.
>
>There are 4 cores in SNB, and 1 GPU. What's the area/power efficiency? The GPU
>doesn't use all 45W, even when running full throttle.
This site suggests otherwise: http://www.legionhardware.com/articles_pages/intel_core_i5_2500k_and_core_i7_2600k_sandy_bridge,14.html
>>Obviously FMA increases the power consumption of the CPU >as well, but the control
>>logic remains practically the same.
>
>Not really. It's a 3 or 4 operand instruction and requires substantially more
>work. But the area increase is less than the FLOP/s increase.
AVX already features 3 operand instructions, today.
>>So to power consumed by the control logic goes
>>down with every process node, while more of the power >budget is spent on actual
>>floating-point operations. At the same time GPUs have to >do the reverse. There's
>>no FMA to add and simply doubling the number of shader >cores does not double the
>>*effective* throughput. Instead they need to rely on >smarter scheduling or larger
>>register files and caches to compensate for the latency.
>
>Well, if you want to talk about effective throughput, then we need to come up with
>a mutually agreed upon workload that measures effective throughput. Theoretical
>FLOP/s are nice and easy to work with, albeit imperfect.
Crysis is a good starting point. Certainly way better than comparing theoretical throughput.
We should actually take future workloads into account as well. A CPU with FMA and gather/scatter can be used for a lot of throughput-oriented workloads the IGP would totally suck at. This adds value too. Even in combination with a powerful discrete graphics card, such a CPU would be much more interesting than a CPU without gather/scatter and an IGP which remains idle.
Anyhow, let's start with Crysis.
>>I believe you're greatly overestimating the power >consumption of the CPUs control
>>logic, compared to the GPUs control logic. It takes more >area to achieve ILP, that's
>>certainly true, but when you're only executing NOPs >there's practically no switching
>>activity. The power consumption is proportional to the >number of uops being processed.
>
>No it's not. Power consumption = C*F*V^2. C has to do with transistors switching
>which is only loosely correlated to uops. Some uops switch more than others.
You appear to have missed that I was talking about the control logic. The average switching activity for the control logic of different (arithmetic) uops is practically the same.
So what I was trying to say is that you pay the price of higher power consumption, when effectively achieving higher throughput. Or put another way: there are times when a GPU could be achieving higher effective performance/Watt if it spent some power extracting dynamic ILP.
It only partially compensates the CPUs power consumption, but sufficiently to make a future CPU with FMA and gather/scatter capable of taking on graphics. Note once more that the area investment would be an issue for GPUs, but with a CPU it's already paid for.
>>Dependent instruction latency is irrelevant to being >throughput oriented or not.
>
>You are 100% wrong here. The dependent integer operation latency is roughly 8X
>worse on a GPU than a CPU. That has a big cost in terms of area and power for CPUs,
>and it enables them to actually run general purpose workloads.
I'm not 100% wrong. If I was, then the GPU with the highest possible dependent instruction latency was the most efficient at throughput oriented workloads. But we both know this leads to register starvation and thus low effective throughput. Clearly you can't conclude anything from latency alone.
So how much of this 8x latency difference you claim is actually due to ALU lantecy? Note that on a CPU even an integer addition and multiplication have different latency (1 and 4), due to forwarding. So you can't simply look at the smallest latency and say the CPU is massively latency optimized, to the point where it sacrifices lots of effective throughput. If an add took 4 cycles instead, would that make the CPU 4 times more throughput-oriented? Obviously not, so likewise GPUs that spend most of the latency outside the ALUs aren't that much more throughput optimized.
Or in other words, a forwarding network massively reduces latency but that doesn't mean it required proportional area or power. And some of it is compensated by enabling the use of a smaller register file, reducing the number of threads to schedule, reducing cache pollution, increasing Amdahl's speedup factor, etc.
>>>>>Anyway, long latency instructions are the best case for >>GPUs, the reason CPUs are
>>>>>clocked at 3GHz+ and hav deep OoO buffers is the >>integer operations where GPUs are, what? 30 times slower?
>>>>
>>>>Still not proving this is relevant to being throughput-oriented or not.
>>>
>>>Actually it does. CPUs are simply the best for latency sensitive workloads. GPUs
>>>are the best for some throughput sensitive workloads.
>>
>>It's clear by now that this "30 times slower" was yet >another prejudice. So calling
>>things "the best" based on this misinformation is >worthless.
>
>Actually, it's not too far off. As you said, the latency for an Nvidia integer
>operation is about 24 cycles. So the latency of a pair of dependent ALU ops is
>roughly 48 cycles @ 1.5GHz (32nm). On a CPU, that would be 2 cycles @ 3.4GHz (~0.6ns).
>That's actually higher than 30X.
>
>Even ATI is ~20ns for dependent ALU ops.
>
>Anyway, you just need to look at the data. The conclusions are obvious.
Only incomplete or irrelevant conclusions can be drawn from looking at one data point alone. 30x higher dependent instruction issue lantency is not a feat by any means and can't be used to determine effective throughput performance.
The viability of software rendering for a CPU with FMA and gather/scatter is affected by many more aspects as a whole. Analysing the data in depth shows that the 'gap' is nowhere near an order of magnitude as you're trying to imply, and the value of a homogenous architecture is greater than that of a CPU+IGP. Plus things are converging as well.
Take care,
Nicolas
Topic | Posted By | Date |
---|---|---|
Sandy Bridge CPU article online | David Kanter | 2010/09/26 09:35 PM |
Sandy Bridge CPU article online | Alex | 2010/09/27 05:22 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:06 AM |
Sandy Bridge CPU article online | someone | 2010/09/27 06:03 AM |
Sandy Bridge CPU article online | slacker | 2010/09/27 02:08 PM |
PowerPC is now Power | Paul A. Clayton | 2010/09/27 04:34 PM |
Sandy Bridge CPU article online | Dave | 2010/11/10 10:15 PM |
Sandy Bridge CPU article online | someone | 2010/09/27 06:23 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 06:39 PM |
Optimizing register clear | Paul A. Clayton | 2010/09/28 12:34 PM |
Sandy Bridge CPU article online | MS | 2010/09/27 06:54 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:15 AM |
Sandy Bridge CPU article online | MS | 2010/09/27 11:02 AM |
Sandy Bridge CPU article online | mpx | 2010/09/27 11:44 AM |
Sandy Bridge CPU article online | MS | 2010/09/27 02:37 PM |
Precisely | David Kanter | 2010/09/27 03:22 PM |
Sandy Bridge CPU article online | Richard Cownie | 2010/09/27 08:27 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:01 AM |
Sandy Bridge CPU article online | Richard Cownie | 2010/09/27 10:40 AM |
Sandy Bridge CPU article online | boots | 2010/09/27 11:19 AM |
Right, mid-2011, not 2010. Sorry (NT) | Richard Cownie | 2010/09/27 11:42 AM |
bulldozer single thread performance | Max | 2010/09/27 12:57 PM |
bulldozer single thread performance | Matt Waldhauer | 2011/03/02 11:32 AM |
Sandy Bridge CPU article online | Pun Zu | 2010/09/27 11:32 AM |
Sandy Bridge CPU article online | ? | 2010/09/27 11:44 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 01:11 PM |
My opinion is that anything that would take advantage of 256-bit AVX | redpriest | 2010/09/27 01:17 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/27 03:09 PM |
My opinion is that anything that would take advantage of 256-bit AVX | redpriest | 2010/09/27 04:06 PM |
My opinion is that anything that would take advantage of 256-bit AVX | David Kanter | 2010/09/27 05:23 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 03:57 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:35 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Matt Waldhauer | 2010/09/28 10:58 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/27 06:39 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:14 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Megol | 2010/09/28 02:17 AM |
My opinion is that anything that would take advantage of 256-bit AVX | Michael S | 2010/09/28 05:47 AM |
PGI | Carlie Coats | 2010/09/28 10:23 AM |
gfortran... | Carlie Coats | 2010/09/29 09:33 AM |
My opinion is that anything that would take advantage of 256-bit AVX | mpx | 2010/09/28 12:58 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Michael S | 2010/09/28 01:36 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Foo_ | 2010/09/29 01:08 AM |
My opinion is that anything that would take advantage of 256-bit AVX | mpx | 2010/09/28 11:37 AM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/28 01:19 PM |
My opinion is that anything that would take advantage of 256-bit AVX | hobold | 2010/09/28 03:08 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:26 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Anthony | 2010/09/28 10:31 PM |
Sandy Bridge CPU article online | Hans de Vries | 2010/09/27 02:19 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 03:19 PM |
Sandy Bridge CPU article online | -Sweeper_ | 2010/09/27 05:50 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 06:41 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/27 02:55 PM |
Sandy Bridge CPU article online | line98 | 2010/09/27 03:05 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 03:20 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/27 03:23 PM |
Sandy Bridge CPU article online | line98 | 2010/09/27 03:42 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 09:33 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 04:04 PM |
Sandy Bridge CPU article online | Jack | 2010/09/27 04:40 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 11:47 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 11:54 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 11:59 PM |
Sandy Bridge CPU article online | JS | 2010/09/28 01:18 AM |
Sandy Bridge CPU article online | Royi | 2010/09/28 01:31 AM |
Sandy Bridge CPU article online | Jack | 2010/09/28 06:34 AM |
Sandy Bridge CPU article online | Royi | 2010/09/28 08:22 AM |
Sandy Bridge CPU article online | Foo_ | 2010/09/28 12:53 PM |
Sandy Bridge CPU article online | Paul | 2010/09/28 01:17 PM |
Sandy Bridge CPU article online | mpx | 2010/09/28 01:22 PM |
Sandy Bridge CPU article online | anonymous | 2010/09/28 02:06 PM |
Sandy Bridge CPU article online | IntelUser2000 | 2010/09/29 01:49 AM |
Sandy Bridge CPU article online | Jack | 2010/09/28 05:08 PM |
Sandy Bridge CPU article online | mpx | 2010/09/29 01:50 AM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/29 12:01 PM |
Sandy Bridge CPU article online | Royi | 2010/09/29 12:48 PM |
Sandy Bridge CPU article online | mpx | 2010/09/29 02:15 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/29 02:27 PM |
Sandy Bridge CPU article online | ? | 2010/09/29 11:18 PM |
Sandy Bridge CPU article online | savantu | 2010/09/30 12:28 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 03:43 AM |
Sandy Bridge CPU article online | gallier2 | 2010/09/30 04:18 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 08:38 AM |
Sandy Bridge CPU article online | David Hess | 2010/09/30 10:28 AM |
moderation (again) | hobold | 2010/10/01 05:08 AM |
Sandy Bridge CPU article online | Megol | 2010/09/30 02:13 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 03:47 AM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 08:54 AM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 10:18 AM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 12:04 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 12:38 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/30 01:02 PM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 08:09 PM |
Sandy Bridge CPU article online | mpx | 2010/09/30 12:40 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 01:00 PM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 08:44 PM |
Sandy Bridge CPU article online | David Hess | 2010/09/30 10:36 AM |
Sandy Bridge CPU article online | someone | 2010/09/30 11:23 AM |
Sandy Bridge CPU article online | mpx | 2010/09/30 01:50 PM |
wii lesson | Michael S | 2010/09/30 02:12 PM |
wii lesson | Dan Downs | 2010/09/30 03:33 PM |
wii lesson | Kevin G | 2010/10/01 12:27 AM |
wii lesson | Rohit | 2010/10/01 07:53 AM |
wii lesson | Kevin G | 2010/10/02 03:30 AM |
wii lesson | mpx | 2010/10/01 09:02 AM |
wii lesson | IntelUser2000 | 2010/10/01 09:31 AM |
GPUs and games | David Kanter | 2010/09/30 08:17 PM |
GPUs and games | hobold | 2010/10/01 05:27 AM |
GPUs and games | anonymous | 2010/10/01 06:35 AM |
GPUs and games | Gabriele Svelto | 2010/10/01 09:07 AM |
GPUs and games | Linus Torvalds | 2010/10/01 10:41 AM |
GPUs and games | Anon | 2010/10/01 11:23 AM |
Can Intel do *this* ??? | Mark Roulo | 2010/10/03 03:17 PM |
Can Intel do *this* ??? | Anon | 2010/10/03 03:29 PM |
Can Intel do *this* ??? | Mark Roulo | 2010/10/03 03:55 PM |
Can Intel do *this* ??? | Anon | 2010/10/03 05:45 PM |
Can Intel do *this* ??? | Ian Ameline | 2010/10/03 10:35 PM |
Graphics, IGPs, and Cache | Joe | 2010/10/10 09:51 AM |
Graphics, IGPs, and Cache | Anon | 2010/10/10 10:18 PM |
Graphics, IGPs, and Cache | Rohit | 2010/10/11 06:14 AM |
Graphics, IGPs, and Cache | hobold | 2010/10/11 06:43 AM |
Maybe the IGPU doesn't load into the L3 | Mark Roulo | 2010/10/11 08:05 AM |
Graphics, IGPs, and Cache | David Kanter | 2010/10/11 09:01 AM |
Can Intel do *this* ??? | Gabriele Svelto | 2010/10/04 12:31 AM |
Kanter's Law. | Ian Ameline | 2010/10/01 02:05 PM |
Kanter's Law. | David Kanter | 2010/10/01 02:18 PM |
Kanter's Law. | Ian Ameline | 2010/10/01 02:33 PM |
Kanter's Law. | Kevin G | 2010/10/01 04:19 PM |
Kanter's Law. | IntelUser2000 | 2010/10/01 10:36 PM |
Kanter's Law. | Kevin G | 2010/10/02 03:15 AM |
Kanter's Law. | IntelUser2000 | 2010/10/02 02:35 PM |
Wii vs pc's | Rohit | 2010/10/01 07:34 PM |
Wii vs pc's | Gabriele Svelto | 2010/10/01 11:54 PM |
GPUs and games | mpx | 2010/10/02 11:30 AM |
GPUs and games | Foo_ | 2010/10/02 04:03 PM |
GPUs and games | mpx | 2010/10/03 11:29 AM |
GPUs and games | Foo_ | 2010/10/03 01:52 PM |
GPUs and games | mpx | 2010/10/03 03:29 PM |
GPUs and games | Anon | 2010/10/03 03:49 PM |
GPUs and games | mpx | 2010/10/04 11:42 AM |
GPUs and games | MS | 2010/10/04 02:51 PM |
GPUs and games | Anon | 2010/10/04 08:29 PM |
persistence of vision | hobold | 2010/10/04 11:47 PM |
GPUs and games | mpx | 2010/10/05 12:51 AM |
GPUs and games | MS | 2010/10/05 06:49 AM |
GPUs and games | Jack | 2010/10/05 11:17 AM |
GPUs and games | MS | 2010/10/05 05:19 PM |
GPUs and games | Jack | 2010/10/05 11:11 AM |
GPUs and games | mpx | 2010/10/05 12:51 PM |
GPUs and games | David Kanter | 2010/10/06 09:04 AM |
GPUs and games | jack | 2010/10/06 09:34 PM |
GPUs and games | Linus Torvalds | 2010/10/05 07:29 AM |
GPUs and games | Foo_ | 2010/10/04 04:49 AM |
GPUs and games | Jeremiah | 2010/10/08 10:58 AM |
GPUs and games | MS | 2010/10/08 01:37 PM |
GPUs and games | Salvatore De Dominicis | 2010/10/04 01:41 AM |
GPUs and games | Kevin G | 2010/10/05 02:13 PM |
GPUs and games | mpx | 2010/10/03 11:36 AM |
GPUs and games | David Kanter | 2010/10/04 07:08 AM |
GPUs and games | Kevin G | 2010/10/04 10:38 AM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 09:19 PM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 12:06 PM |
Sandy Bridge CPU article online | rwessel | 2010/09/30 02:29 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/30 03:06 PM |
Sandy Bridge CPU article online | rwessel | 2010/09/30 06:55 PM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 03:53 AM |
Sandy Bridge CPU article online | rwessel | 2010/10/01 08:30 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 09:31 AM |
Sandy Bridge CPU article online | rwessel | 2010/10/01 10:56 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:28 PM |
Sandy Bridge CPU article online | Ricardo B | 2010/10/02 05:38 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/02 06:59 PM |
which bus more wasteful | Michael S | 2010/10/02 10:38 AM |
which bus more wasteful | rwessel | 2010/10/02 07:15 PM |
Sandy Bridge CPU article online | Ricardo B | 2010/10/01 10:08 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:31 PM |
Sandy Bridge CPU article online | Andi Kleen | 2010/10/01 11:55 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:32 PM |
Sandy Bridge CPU article online | kdg | 2010/10/01 11:26 AM |
Sandy Bridge CPU article online | Anon | 2010/10/01 11:33 AM |
Analog display out? | David Kanter | 2010/10/01 01:05 PM |
Analog display out? | mpx | 2010/10/02 11:46 AM |
Analog display out? | Anon | 2010/10/03 03:26 PM |
Digital is expensive! | David Kanter | 2010/10/03 06:36 PM |
Digital is expensive! | Anon | 2010/10/03 08:07 PM |
Digital is expensive! | David Kanter | 2010/10/03 10:02 PM |
Digital is expensive! | Steve Underwood | 2010/10/04 03:52 AM |
Digital is expensive! | David Kanter | 2010/10/04 07:03 AM |
Digital is expensive! | anonymous | 2010/10/04 07:11 AM |
Digital is not very expensive! | Steve Underwood | 2010/10/04 06:08 PM |
Digital is not very expensive! | Anon | 2010/10/04 08:33 PM |
Digital is not very expensive! | Steve Underwood | 2010/10/04 11:03 PM |
Digital is not very expensive! | mpx | 2010/10/05 01:10 PM |
Digital is not very expensive! | Gabriele Svelto | 2010/10/05 12:24 AM |
Digital is expensive! | jal142 | 2010/10/04 11:46 AM |
Digital is expensive! | mpx | 2010/10/04 01:04 AM |
Digital is expensive! | Gabriele Svelto | 2010/10/04 03:28 AM |
Digital is expensive! | Mark Christiansen | 2010/10/04 03:12 PM |
Analog display out? | slacker | 2010/10/03 06:44 PM |
Analog display out? | Anon | 2010/10/03 08:05 PM |
Analog display out? | Steve Underwood | 2010/10/04 03:48 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:37 PM |
Sandy Bridge CPU article online | slacker | 2010/10/02 02:53 PM |
Sandy Bridge CPU article online | David Hess | 2010/10/02 06:49 PM |
memory bandwith | Max | 2010/09/30 12:19 PM |
memory bandwith | Anon | 2010/10/01 11:28 AM |
memory bandwith | Jack | 2010/10/01 07:45 PM |
memory bandwith | Anon | 2010/10/03 03:19 PM |
Sandy Bridge CPU article online | PiedPiper | 2010/09/30 07:05 PM |
Sandy Bridge CPU article online | Matt Sayler | 2010/09/29 04:38 PM |
Sandy Bridge CPU article online | Jack | 2010/09/29 09:39 PM |
Sandy Bridge CPU article online | mpx | 2010/09/30 12:24 AM |
Sandy Bridge CPU article online | passer | 2010/09/30 03:15 AM |
Sandy Bridge CPU article online | mpx | 2010/09/30 03:47 AM |
Sandy Bridge CPU article online | passer | 2010/09/30 04:25 AM |
SB and web browsing | Rohit | 2010/09/30 06:47 AM |
SB and web browsing | David Hess | 2010/09/30 07:10 AM |
SB and web browsing | MS | 2010/09/30 10:21 AM |
SB and web browsing | passer | 2010/09/30 10:26 AM |
SB and web browsing | MS | 2010/10/02 06:41 PM |
SB and web browsing | Rohit | 2010/10/01 08:02 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/30 08:35 AM |
Sandy Bridge CPU article online | Jack | 2010/09/30 10:40 PM |
processor evolution | hobold | 2010/09/29 02:16 PM |
processor evolution | Foo_ | 2010/09/30 06:10 AM |
processor evolution | Jack | 2010/09/30 07:07 PM |
3D gaming as GPGPU app | hobold | 2010/10/01 04:59 AM |
3D gaming as GPGPU app | Jack | 2010/10/01 07:39 PM |
processor evolution | hobold | 2010/10/01 04:35 AM |
processor evolution | David Kanter | 2010/10/01 10:02 AM |
processor evolution | Anon | 2010/10/01 11:46 AM |
Display | David Kanter | 2010/10/01 01:26 PM |
Display | Rohit | 2010/10/02 02:56 AM |
Display | Linus Torvalds | 2010/10/02 07:40 AM |
Display | rwessel | 2010/10/02 08:58 AM |
Display | sJ | 2010/10/02 10:28 PM |
Display | rwessel | 2010/10/03 08:38 AM |
Display | Anon | 2010/10/03 03:06 PM |
Display tech and compute are different | David Kanter | 2010/10/03 06:33 PM |
Display tech and compute are different | Anon | 2010/10/03 08:16 PM |
Display tech and compute are different | David Kanter | 2010/10/03 10:00 PM |
Display tech and compute are different | hobold | 2010/10/04 01:40 AM |
Display | ? | 2010/10/03 03:02 AM |
Display | Linus Torvalds | 2010/10/03 10:18 AM |
Display | Richard Cownie | 2010/10/03 11:12 AM |
Display | Linus Torvalds | 2010/10/03 12:16 PM |
Display | slacker | 2010/10/03 07:35 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/04 07:06 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/04 11:44 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/04 02:59 PM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/04 03:13 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/04 08:58 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/05 01:39 AM |
current V12 engines with >6.0 displacement | MS | 2010/10/05 06:57 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/05 01:20 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/05 09:26 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 05:39 AM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 01:22 PM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/06 03:07 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 03:56 PM |
current V12 engines with >6.0 displacement | rwessel | 2010/10/06 03:30 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 03:53 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/07 01:32 PM |
current V12 engines with >6.0 displacement | rwessel | 2010/10/07 07:54 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 09:02 PM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | slacker | 2010/10/06 07:20 PM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | Ricardo B | 2010/10/07 01:32 AM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | slacker | 2010/10/07 08:15 AM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | Ricardo B | 2010/10/07 10:51 AM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 05:03 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 06:26 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 11:15 PM |
current V12 engines with >6.0 displacement | Howard Chu | 2010/10/07 02:16 PM |
current V12 engines with >6.0 displacement | Anon | 2010/10/05 10:31 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 05:55 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/06 06:15 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 06:34 AM |
I wonder is there any tech area that this forum doesn't have an opinion on (NT) | Rob Thorpe | 2010/10/06 10:11 AM |
Cunieform tablets | David Kanter | 2010/10/06 12:57 PM |
Cunieform tablets | Linus Torvalds | 2010/10/06 01:06 PM |
Ouch...maybe I should hire a new editor (NT) | David Kanter | 2010/10/06 04:38 PM |
Cunieform tablets | rwessel | 2010/10/06 03:41 PM |
Cunieform tablets | seni | 2010/10/07 10:56 AM |
Cunieform tablets | Howard Chu | 2010/10/07 01:44 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/06 06:10 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/06 10:44 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 07:55 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:51 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 07:38 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:33 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 09:04 PM |
Practical vehicles for commuting | Rob Thorpe | 2010/10/08 05:50 AM |
Practical vehicles for commuting | Gabriele Svelto | 2010/10/08 06:05 AM |
Practical vehicles for commuting | Rob Thorpe | 2010/10/08 06:21 AM |
Practical vehicles for commuting | j | 2010/10/08 02:20 PM |
Practical vehicles for commuting | Rob Thorpe | 2010/12/09 07:00 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/08 10:14 AM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/07 01:23 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/07 04:08 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 05:41 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 08:05 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:52 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/08 07:52 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 11:28 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 12:37 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/07 01:37 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/05 02:02 AM |
Display | Linus Torvalds | 2010/10/04 10:39 AM |
Display | Gabriele Svelto | 2010/10/05 12:34 AM |
Display | Richard Cownie | 2010/10/04 06:22 AM |
Display | anon | 2010/10/04 09:22 PM |
Display | Richard Cownie | 2010/10/05 06:42 AM |
Display | mpx | 2010/10/03 11:55 AM |
Display | rcf | 2010/10/03 01:12 PM |
Display | mpx | 2010/10/03 02:36 PM |
Display | rcf | 2010/10/03 05:36 PM |
Display | Ricardo B | 2010/10/04 02:50 PM |
Display | gallier2 | 2010/10/05 03:44 AM |
Display | David Hess | 2010/10/05 05:21 AM |
Display | gallier2 | 2010/10/05 08:21 AM |
Display | David Hess | 2010/10/03 11:21 PM |
Display | rcf | 2010/10/04 08:06 AM |
Display | David Kanter | 2010/10/03 01:54 PM |
Alternative integration | Paul A. Clayton | 2010/10/06 08:51 AM |
Display | slacker | 2010/10/03 07:26 PM |
Display & marketing & analogies | ? | 2010/10/04 02:33 AM |
Display & marketing & analogies | kdg | 2010/10/04 06:00 AM |
Display | Kevin G | 2010/10/02 09:49 AM |
Display | Anon | 2010/10/03 03:43 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/29 03:17 PM |
Sandy Bridge CPU article online | Jack | 2010/09/28 06:27 AM |
Sandy Bridge CPU article online | IntelUser2000 | 2010/09/28 03:07 AM |
Sandy Bridge CPU article online | mpx | 2010/09/28 12:34 PM |
Sandy Bridge CPU article online | Aaron Spink | 2010/09/28 01:28 PM |
Sandy Bridge CPU article online | JoshW | 2010/09/28 02:13 PM |
Sandy Bridge CPU article online | mpx | 2010/09/28 02:54 PM |
Sandy Bridge CPU article online | Foo_ | 2010/09/29 01:19 AM |
Sandy Bridge CPU article online | mpx | 2010/09/29 03:06 AM |
Sandy Bridge CPU article online | JS | 2010/09/29 03:42 AM |
Sandy Bridge CPU article online | mpx | 2010/09/29 04:03 AM |
Sandy Bridge CPU article online | Foo_ | 2010/09/29 05:55 AM |
Sandy Bridge CPU article online | ajensen | 2010/09/28 12:19 AM |
Sandy Bridge CPU article online | Ian Ollmann | 2010/09/28 04:52 PM |
Sandy Bridge CPU article online | a reader | 2010/09/28 05:05 PM |
Sandy Bridge CPU article online | ajensen | 2010/09/28 11:35 PM |
Updated: Sandy Bridge CPU article | David Kanter | 2010/10/01 05:11 AM |
Updated: Sandy Bridge CPU article | anon | 2011/01/07 09:55 PM |
Updated: Sandy Bridge CPU article | Eric Bron | 2011/01/08 03:29 AM |
Updated: Sandy Bridge CPU article | anon | 2011/01/11 11:24 PM |
Updated: Sandy Bridge CPU article | anon | 2011/01/15 11:21 AM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anon | 2011/01/16 11:22 PM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anonymous | 2011/01/17 02:04 AM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anon | 2011/01/17 07:12 AM |
I can try.... | David Kanter | 2011/01/18 03:54 PM |
I can try.... | anon | 2011/01/18 08:07 PM |
I can try.... | David Kanter | 2011/01/18 11:24 PM |
I can try.... | anon | 2011/01/19 07:51 AM |
Wider fetch than execute makes sense | Paul A. Clayton | 2011/01/19 08:53 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/04 07:29 AM |
Sandy Bridge CPU article online | Seni | 2011/01/04 09:07 PM |
Sandy Bridge CPU article online | hobold | 2011/01/04 11:26 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 02:01 AM |
software assist exceptions | hobold | 2011/01/05 04:36 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 01:58 AM |
Sandy Bridge CPU article online | anon | 2011/01/05 04:51 AM |
Sandy Bridge CPU article online | Seni | 2011/01/05 08:53 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 09:03 AM |
Sandy Bridge CPU article online | anon | 2011/01/05 04:14 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 04:50 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/05 05:00 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 07:26 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/05 07:50 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 08:39 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 03:50 PM |
permuting vector elements | hobold | 2011/01/05 05:03 PM |
permuting vector elements | Nicolas Capens | 2011/01/05 06:01 PM |
permuting vector elements | Nicolas Capens | 2011/01/06 08:27 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/11 11:33 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/11 01:51 PM |
Sandy Bridge CPU article online | hobold | 2011/01/11 02:11 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/11 06:07 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/12 03:25 AM |
Sandy Bridge CPU article online | hobold | 2011/01/12 05:03 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/12 11:27 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/13 02:38 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/13 03:32 AM |
Sandy Bridge CPU article online | hobold | 2011/01/13 01:53 PM |
What happened to VPERMIL2PS? | Michael S | 2011/01/13 03:46 AM |
What happened to VPERMIL2PS? | Eric Bron | 2011/01/13 06:46 AM |
Lower cost permute | Paul A. Clayton | 2011/01/13 12:11 PM |
Sandy Bridge CPU article online | anon | 2011/01/25 06:31 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/12 06:34 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/13 07:38 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/15 09:47 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/16 03:13 AM |
And just to make a further example | Gabriele Svelto | 2011/01/16 04:24 AM |
Sandy Bridge CPU article online | mpx | 2011/01/16 01:27 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/25 02:56 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/25 04:11 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/26 08:49 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/26 04:35 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/27 02:51 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/27 02:40 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/28 03:24 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/28 03:49 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/30 02:11 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/31 03:43 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/01 04:02 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/01 04:28 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/01 04:43 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/28 07:14 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/01 02:58 AM |
Sandy Bridge CPU article online | EduardoS | 2011/02/01 02:36 PM |
Sandy Bridge CPU article online | anon | 2011/02/01 04:56 PM |
Sandy Bridge CPU article online | EduardoS | 2011/02/01 09:17 PM |
Sandy Bridge CPU article online | anon | 2011/02/01 10:13 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/02 04:08 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/02 04:26 AM |
Sandy Bridge CPU article online | kalmaegi | 2011/02/01 09:29 AM |
SW Rasterization | David Kanter | 2011/01/27 05:18 PM |
Lower pin count memory | iz | 2011/01/27 09:19 PM |
Lower pin count memory | David Kanter | 2011/01/27 09:25 PM |
Lower pin count memory | iz | 2011/01/27 11:31 PM |
Lower pin count memory | David Kanter | 2011/01/27 11:52 PM |
Lower pin count memory | iz | 2011/01/28 12:28 AM |
Lower pin count memory | David Kanter | 2011/01/28 01:05 AM |
Lower pin count memory | iz | 2011/01/28 03:55 AM |
Lower pin count memory | David Hess | 2011/01/28 01:15 PM |
Lower pin count memory | David Kanter | 2011/01/28 01:57 PM |
Lower pin count memory | iz | 2011/01/28 05:20 PM |
Two years later | ForgotPants | 2013/10/26 11:33 AM |
Two years later | anon | 2013/10/26 11:36 AM |
Two years later | Exophase | 2013/10/26 12:56 PM |
Two years later | David Hess | 2013/10/26 05:05 PM |
Herz is totally the thing you DON*T care. | Jouni Osmala | 2013/10/27 01:48 AM |
Herz is totally the thing you DON*T care. | EduardoS | 2013/10/27 07:00 AM |
Herz is totally the thing you DON*T care. | Michael S | 2013/10/27 07:45 AM |
Two years later | someone | 2013/10/28 07:21 AM |
Lower pin count memory | Martin Høyer Kristiansen | 2011/01/28 01:41 AM |
Lower pin count memory | iz | 2011/01/28 03:07 AM |
Lower pin count memory | Darrell Coker | 2011/01/27 10:39 PM |
Lower pin count memory | iz | 2011/01/28 12:20 AM |
Lower pin count memory | Darrell Coker | 2011/01/28 06:07 PM |
Lower pin count memory | iz | 2011/01/28 11:57 PM |
Lower pin count memory | Darrell Coker | 2011/01/29 02:21 AM |
Lower pin count memory | iz | 2011/01/31 10:28 PM |
SW Rasterization | Nicolas Capens | 2011/02/02 08:48 AM |
SW Rasterization | Eric Bron | 2011/02/02 09:37 AM |
SW Rasterization | Nicolas Capens | 2011/02/02 04:35 PM |
SW Rasterization | Eric Bron | 2011/02/02 05:11 PM |
SW Rasterization | Eric Bron | 2011/02/03 02:13 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 07:57 AM |
SW Rasterization | Eric Bron | 2011/02/04 08:50 AM |
erratum | Eric Bron | 2011/02/04 08:58 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 05:25 PM |
SW Rasterization | David Kanter | 2011/02/04 05:33 PM |
SW Rasterization | anon | 2011/02/04 06:04 PM |
SW Rasterization | Nicolas Capens | 2011/02/05 03:39 PM |
SW Rasterization | David Kanter | 2011/02/05 05:07 PM |
SW Rasterization | Nicolas Capens | 2011/02/05 11:39 PM |
SW Rasterization | Eric Bron | 2011/02/04 10:55 AM |
Comments pt 1 | David Kanter | 2011/02/02 01:08 PM |
Comments pt 1 | Eric Bron | 2011/02/02 03:16 PM |
Comments pt 1 | Gabriele Svelto | 2011/02/03 01:37 AM |
Comments pt 1 | Eric Bron | 2011/02/03 02:36 AM |
Comments pt 1 | Nicolas Capens | 2011/02/03 11:08 PM |
Comments pt 1 | Nicolas Capens | 2011/02/03 10:26 PM |
Comments pt 1 | Eric Bron | 2011/02/04 03:33 AM |
Comments pt 1 | Nicolas Capens | 2011/02/04 05:24 AM |
example code | Eric Bron | 2011/02/04 04:51 AM |
example code | Nicolas Capens | 2011/02/04 08:24 AM |
example code | Eric Bron | 2011/02/04 08:36 AM |
example code | Nicolas Capens | 2011/02/05 11:43 PM |
Comments pt 1 | Rohit | 2011/02/04 12:43 PM |
Comments pt 1 | Nicolas Capens | 2011/02/04 05:05 PM |
Comments pt 1 | David Kanter | 2011/02/04 05:36 PM |
Comments pt 1 | Nicolas Capens | 2011/02/05 02:45 PM |
Comments pt 1 | Eric Bron | 2011/02/05 04:13 PM |
Comments pt 1 | Nicolas Capens | 2011/02/05 11:52 PM |
Comments pt 1 | Eric Bron | 2011/02/06 01:31 AM |
Comments pt 1 | Nicolas Capens | 2011/02/06 04:06 PM |
Comments pt 1 | Eric Bron | 2011/02/07 03:12 AM |
The need for gather/scatter support | Nicolas Capens | 2011/02/10 10:07 AM |
The need for gather/scatter support | Eric Bron | 2011/02/11 03:11 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/13 03:39 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 07:46 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:48 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 09:32 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 10:07 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 09:00 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:49 AM |
Gather/scatter performance data | Eric Bron | 2011/02/15 02:23 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 05:06 PM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:52 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 09:43 AM |
SW Rasterization - a long way off | Rohit | 2011/02/02 01:17 PM |
SW Rasterization - a long way off | Nicolas Capens | 2011/02/04 03:59 AM |
CPU only rendering - a long way off | Rohit | 2011/02/04 11:52 AM |
CPU only rendering - a long way off | Nicolas Capens | 2011/02/04 07:15 PM |
CPU only rendering - a long way off | Rohit | 2011/02/05 02:00 AM |
CPU only rendering - a long way off | Nicolas Capens | 2011/02/05 09:45 PM |
CPU only rendering - a long way off | David Kanter | 2011/02/06 09:51 PM |
CPU only rendering - a long way off | Gian-Carlo Pascutto | 2011/02/07 12:22 AM |
Encryption | David Kanter | 2011/02/07 01:18 AM |
Encryption | Nicolas Capens | 2011/02/07 07:51 AM |
Encryption | David Kanter | 2011/02/07 11:50 AM |
Encryption | Nicolas Capens | 2011/02/08 10:26 AM |
CPUs are latency optimized | David Kanter | 2011/02/08 11:38 AM |
efficient compiler on an efficient GPU real today. | sJ | 2011/02/08 11:29 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/09 09:49 PM |
CPUs are latency optimized | Eric Bron | 2011/02/10 12:49 AM |
CPUs are latency optimized | Antti-Ville Tuunainen | 2011/02/10 06:16 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/10 07:04 AM |
CPUs are latency optimized | Eric Bron | 2011/02/10 07:48 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/10 01:31 PM |
CPUs are latency optimized | Eric Bron | 2011/02/11 02:43 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/11 07:31 AM |
CPUs are latency optimized | EduardoS | 2011/02/10 05:29 PM |
CPUs are latency optimized | Anon | 2011/02/10 06:40 PM |
CPUs are latency optimized | David Kanter | 2011/02/10 08:33 PM |
CPUs are latency optimized | EduardoS | 2011/02/11 02:18 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/11 05:56 AM |
CPUs are latency optimized | Rohit | 2011/02/11 07:33 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/14 02:19 AM |
CPUs are latency optimized | Eric Bron | 2011/02/14 03:23 AM |
CPUs are latency optimized | EduardoS | 2011/02/14 01:11 PM |
CPUs are latency optimized | David Kanter | 2011/02/11 02:45 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/15 05:22 AM |
CPUs are latency optimized | David Kanter | 2011/02/15 12:47 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/15 07:10 PM |
Have fun | David Kanter | 2011/02/15 10:04 PM |
Have fun | Nicolas Capens | 2011/02/17 03:59 AM |
Have fun | Brett | 2011/02/17 12:56 PM |
Have fun | Nicolas Capens | 2011/02/19 04:53 PM |
Have fun | Brett | 2011/02/20 06:08 PM |
Have fun | Brett | 2011/02/20 07:13 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/02/23 05:37 PM |
On-die storage to fight Amdahl | Brett | 2011/02/23 09:59 PM |
On-die storage to fight Amdahl | Brett | 2011/02/23 10:08 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/02/24 07:42 PM |
On-die storage to fight Amdahl | Rohit | 2011/02/25 11:02 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/03/09 06:53 PM |
On-die storage to fight Amdahl | Rohit | 2011/03/10 08:02 AM |
NVIDIA using tile based rendering? | Nathan Monson | 2011/03/11 07:58 PM |
NVIDIA using tile based rendering? | Rohit | 2011/03/12 04:29 AM |
NVIDIA using tile based rendering? | Nathan Monson | 2011/03/12 11:05 AM |
NVIDIA using tile based rendering? | Rohit | 2011/03/12 11:16 AM |
On-die storage to fight Amdahl | Brett | 2011/02/26 02:10 AM |
On-die storage to fight Amdahl | Nathan Monson | 2011/02/26 01:51 PM |
On-die storage to fight Amdahl | Brett | 2011/02/26 04:40 PM |
Convergence is inevitable | Nicolas Capens | 2011/03/09 08:22 PM |
Convergence is inevitable | Brett | 2011/03/09 10:59 PM |
Convergence is inevitable | Antti-Ville Tuunainen | 2011/03/10 03:34 PM |
Convergence is inevitable | Brett | 2011/03/10 09:39 PM |
Procedural texturing? | David Kanter | 2011/03/11 01:32 AM |
Procedural texturing? | hobold | 2011/03/11 03:59 AM |
Procedural texturing? | Dan Downs | 2011/03/11 09:28 AM |
Procedural texturing? | Mark Roulo | 2011/03/11 02:58 PM |
Procedural texturing? | Anon | 2011/03/11 06:11 PM |
Procedural texturing? | Nathan Monson | 2011/03/11 07:30 PM |
Procedural texturing? | Brett | 2011/03/15 07:45 AM |
Procedural texturing? | Seni | 2011/03/15 10:13 AM |
Procedural texturing? | Brett | 2011/03/15 11:45 AM |
Procedural texturing? | Seni | 2011/03/15 02:09 PM |
Procedural texturing? | Brett | 2011/03/11 10:02 PM |
Procedural texturing? | Brett | 2011/03/11 09:34 PM |
Procedural texturing? | Eric Bron | 2011/03/12 03:37 AM |
Convergence is inevitable | Jouni Osmala | 2011/03/09 11:28 PM |
Convergence is inevitable | Brett | 2011/04/05 05:08 PM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 05:23 AM |
Convergence is inevitable | none | 2011/04/07 07:03 AM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 10:34 AM |
Convergence is inevitable | anon | 2011/04/07 02:15 PM |
Convergence is inevitable | none | 2011/04/08 01:57 AM |
Convergence is inevitable | Brett | 2011/04/07 08:04 PM |
Convergence is inevitable | none | 2011/04/08 02:14 AM |
Gather implementation | David Kanter | 2011/04/08 12:01 PM |
RAM Latency | David Hess | 2011/04/07 08:22 AM |
RAM Latency | Brett | 2011/04/07 07:20 PM |
RAM Latency | Nicolas Capens | 2011/04/07 10:18 PM |
RAM Latency | Brett | 2011/04/08 05:33 AM |
RAM Latency | Nicolas Capens | 2011/04/10 02:23 PM |
RAM Latency | Rohit | 2011/04/08 06:57 AM |
RAM Latency | Nicolas Capens | 2011/04/10 01:23 PM |
RAM Latency | David Kanter | 2011/04/10 02:27 PM |
RAM Latency | Rohit | 2011/04/11 06:17 AM |
Convergence is inevitable | Eric Bron | 2011/04/07 09:46 AM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 09:50 PM |
Convergence is inevitable | Eric Bron | 2011/04/08 12:39 AM |
Flaws in PowerVR | Rohit | 2011/02/25 11:21 PM |
Flaws in PowerVR | Brett | 2011/02/26 12:37 AM |
Flaws in PowerVR | Paul | 2011/02/26 05:17 AM |
Have fun | David Kanter | 2011/02/18 12:52 PM |
Have fun | Michael S | 2011/02/19 12:12 PM |
Have fun | David Kanter | 2011/02/19 03:26 PM |
Have fun | Michael S | 2011/02/19 04:43 PM |
Have fun | anon | 2011/02/19 05:02 PM |
Have fun | Michael S | 2011/02/19 05:56 PM |
Have fun | anon | 2011/02/20 03:50 PM |
Have fun | EduardoS | 2011/02/20 02:44 PM |
Linear vs non-linear | EduardoS | 2011/02/20 02:55 PM |
Have fun | Michael S | 2011/02/20 04:19 PM |
Have fun | EduardoS | 2011/02/20 05:51 PM |
Have fun | Nicolas Capens | 2011/02/21 11:12 AM |
Have fun | Michael S | 2011/02/21 12:38 PM |
Have fun | Eric Bron | 2011/02/21 02:10 PM |
Have fun | Eric Bron | 2011/02/21 02:39 PM |
Have fun | Michael S | 2011/02/21 06:13 PM |
Have fun | Eric Bron | 2011/02/22 12:43 AM |
Have fun | Michael S | 2011/02/22 01:47 AM |
Have fun | Eric Bron | 2011/02/22 02:10 AM |
Have fun | Michael S | 2011/02/22 11:37 AM |
Have fun | anon | 2011/02/22 01:38 PM |
Have fun | EduardoS | 2011/02/22 03:49 PM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/23 06:37 PM |
Gather/scatter efficiency | anonymous | 2011/02/23 06:51 PM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/24 06:57 PM |
Gather/scatter efficiency | anonymous | 2011/02/24 07:16 PM |
Gather/scatter efficiency | Michael S | 2011/02/25 07:45 AM |
Gather implementation | David Kanter | 2011/02/25 05:34 PM |
Gather implementation | Michael S | 2011/02/26 10:40 AM |
Gather implementation | anon | 2011/02/26 11:52 AM |
Gather implementation | Michael S | 2011/02/26 12:16 PM |
Gather implementation | anon | 2011/02/26 11:22 PM |
Gather implementation | Michael S | 2011/02/27 07:23 AM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/28 03:14 PM |
Consider yourself ignored | David Kanter | 2011/02/22 01:05 AM |
one more anti-FMA flame. By me. | Michael S | 2011/02/16 07:40 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/16 08:30 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/16 09:15 AM |
one more anti-FMA flame. By me. | Nicolas Capens | 2011/02/17 06:27 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/17 07:42 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/17 05:46 PM |
Tarantula paper | Paul A. Clayton | 2011/02/18 12:38 AM |
Tarantula paper | Nicolas Capens | 2011/02/19 05:19 PM |
anti-FMA != anti-throughput or anti-SG | Eric Bron | 2011/02/18 01:48 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/20 03:46 PM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/20 05:00 PM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 04:05 AM |
Software pipelining on x86 | David Kanter | 2011/02/23 05:04 AM |
Software pipelining on x86 | JS | 2011/02/23 05:25 AM |
Software pipelining on x86 | Salvatore De Dominicis | 2011/02/23 08:37 AM |
Software pipelining on x86 | Jouni Osmala | 2011/02/23 09:10 AM |
Software pipelining on x86 | LeeMiller | 2011/02/23 10:07 PM |
Software pipelining on x86 | Nicolas Capens | 2011/02/24 03:17 PM |
Software pipelining on x86 | anonymous | 2011/02/24 07:04 PM |
Software pipelining on x86 | Nicolas Capens | 2011/02/28 09:27 AM |
Software pipelining on x86 | Antti-Ville Tuunainen | 2011/03/02 04:31 AM |
Software pipelining on x86 | Megol | 2011/03/02 12:55 PM |
Software pipelining on x86 | Geert Bosch | 2011/03/03 07:58 AM |
FMA benefits and latency predictions | David Kanter | 2011/02/25 05:14 PM |
FMA benefits and latency predictions | Antti-Ville Tuunainen | 2011/02/26 10:43 AM |
FMA benefits and latency predictions | Matt Waldhauer | 2011/02/27 06:42 AM |
FMA benefits and latency predictions | Nicolas Capens | 2011/03/09 06:11 PM |
FMA benefits and latency predictions | Rohit | 2011/03/10 08:11 AM |
FMA benefits and latency predictions | Eric Bron | 2011/03/10 09:30 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/23 05:19 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 07:50 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/23 10:37 AM |
FMA and beyond | Nicolas Capens | 2011/02/24 04:47 PM |
detour on terminology | hobold | 2011/02/24 07:08 PM |
detour on terminology | Nicolas Capens | 2011/02/28 02:24 PM |
detour on terminology | Eric Bron | 2011/03/01 02:38 AM |
detour on terminology | Michael S | 2011/03/01 05:03 AM |
detour on terminology | Eric Bron | 2011/03/01 05:39 AM |
detour on terminology | Michael S | 2011/03/01 08:33 AM |
detour on terminology | Eric Bron | 2011/03/01 09:34 AM |
erratum | Eric Bron | 2011/03/01 09:54 AM |
detour on terminology | Nicolas Capens | 2011/03/10 08:39 AM |
detour on terminology | Eric Bron | 2011/03/10 09:50 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 06:12 AM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 11:25 PM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/17 06:51 PM |
Tarantula vector unit well-integrated | Paul A. Clayton | 2011/02/18 12:38 AM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/19 02:17 PM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 02:09 AM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/20 09:55 AM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 01:39 PM |
anti-FMA != anti-throughput or anti-SG | EduardoS | 2011/02/20 02:35 PM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/21 08:12 AM |
anti-FMA != anti-throughput or anti-SG | anon | 2011/02/17 10:44 PM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/18 06:20 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/17 08:24 AM |
thanks | Michael S | 2011/02/17 04:56 PM |
CPUs are latency optimized | EduardoS | 2011/02/15 01:24 PM |
SwiftShader SNB test | Eric Bron | 2011/02/15 03:46 PM |
SwiftShader NHM test | Eric Bron | 2011/02/15 04:50 PM |
SwiftShader SNB test | Nicolas Capens | 2011/02/17 12:06 AM |
SwiftShader SNB test | Eric Bron | 2011/02/17 01:21 AM |
SwiftShader SNB test | Eric Bron | 2011/02/22 10:32 AM |
SwiftShader SNB test 2nd run | Eric Bron | 2011/02/22 10:51 AM |
SwiftShader SNB test 2nd run | Nicolas Capens | 2011/02/23 02:14 PM |
SwiftShader SNB test 2nd run | Eric Bron | 2011/02/23 02:42 PM |
Win7SP1 out but no AVX hype? | Michael S | 2011/02/24 03:14 AM |
Win7SP1 out but no AVX hype? | Eric Bron | 2011/02/24 03:39 AM |
CPUs are latency optimized | Eric Bron | 2011/02/15 08:02 AM |
CPUs are latency optimized | EduardoS | 2011/02/11 03:40 PM |
CPU only rendering - not a long way off | Nicolas Capens | 2011/02/07 06:45 AM |
CPU only rendering - not a long way off | David Kanter | 2011/02/07 12:09 PM |
CPU only rendering - not a long way off | anonymous | 2011/02/07 10:25 PM |
Sandy Bridge IGP EUs | David Kanter | 2011/02/07 11:22 PM |
Sandy Bridge IGP EUs | Hannes | 2011/02/08 05:59 AM |
SW Rasterization - Why? | Seni | 2011/02/02 02:53 PM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/10 03:12 PM |
Market reasons to ditch the IGP | Seni | 2011/02/11 05:42 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/16 04:29 AM |
Market reasons to ditch the IGP | Seni | 2011/02/16 01:39 PM |
An excellent post! | David Kanter | 2011/02/16 03:18 PM |
CPUs clock higher | Moritz | 2011/02/17 08:06 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/18 06:22 PM |
Market reasons to ditch the IGP | IntelUser2000 | 2011/02/18 07:20 PM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/21 02:42 PM |
Bad data (repeated) | David Kanter | 2011/02/22 12:21 AM |
Bad data (repeated) | none | 2011/02/22 03:04 AM |
13W or 8W? | Foo_ | 2011/02/22 06:00 AM |
13W or 8W? | Linus Torvalds | 2011/02/22 08:58 AM |
13W or 8W? | David Kanter | 2011/02/22 11:33 AM |
13W or 8W? | Mark Christiansen | 2011/02/22 02:47 PM |
Bigger picture | Nicolas Capens | 2011/02/24 06:33 PM |
Bigger picture | Nicolas Capens | 2011/02/24 08:06 PM |
20+ Watt | Nicolas Capens | 2011/02/24 08:18 PM |
<20W | David Kanter | 2011/02/25 01:13 PM |
>20W | Nicolas Capens | 2011/03/08 07:34 PM |
IGP is 3X more efficient | David Kanter | 2011/03/08 10:53 PM |
IGP is 3X more efficient | Eric Bron | 2011/03/09 02:44 AM |
>20W | Eric Bron | 2011/03/09 03:48 AM |
Specious data and claims are still specious | David Kanter | 2011/02/25 02:38 AM |
IGP power consumption, LRB samplers | Nicolas Capens | 2011/03/08 06:24 PM |
IGP power consumption, LRB samplers | EduardoS | 2011/03/08 06:52 PM |
IGP power consumption, LRB samplers | Rohit | 2011/03/09 07:42 AM |
Market reasons to ditch the IGP | none | 2011/02/22 02:58 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/24 06:43 PM |
Market reasons to ditch the IGP | slacker | 2011/02/22 02:32 PM |
Market reasons to ditch the IGP | Seni | 2011/02/18 09:51 PM |
Correction - 28 comparators, not 36. (NT) | Seni | 2011/02/18 10:03 PM |
Market reasons to ditch the IGP | Gabriele Svelto | 2011/02/19 01:49 AM |
Market reasons to ditch the IGP | Seni | 2011/02/19 11:59 AM |
Market reasons to ditch the IGP | Exophase | 2011/02/20 10:43 AM |
Market reasons to ditch the IGP | EduardoS | 2011/02/19 10:13 AM |
Market reasons to ditch the IGP | Seni | 2011/02/19 11:46 AM |
The next revolution | Nicolas Capens | 2011/02/22 03:33 AM |
The next revolution | Gabriele Svelto | 2011/02/22 09:15 AM |
The next revolution | Eric Bron | 2011/02/22 09:48 AM |
The next revolution | Nicolas Capens | 2011/02/23 07:39 PM |
The next revolution | Gabriele Svelto | 2011/02/24 12:43 AM |
GPGPU content creation (or lack of it) | Nicolas Capens | 2011/02/28 07:39 AM |
GPGPU content creation (or lack of it) | The market begs to differ | 2011/03/01 06:32 AM |
GPGPU content creation (or lack of it) | Nicolas Capens | 2011/03/09 09:14 PM |
GPGPU content creation (or lack of it) | Gabriele Svelto | 2011/03/10 01:01 AM |
The market begs to differ | Gabriele Svelto | 2011/03/01 06:33 AM |
The next revolution | Anon | 2011/02/24 02:15 AM |
The next revolution | Nicolas Capens | 2011/02/28 02:34 PM |
The next revolution | Seni | 2011/02/22 02:02 PM |
The next revolution | Gabriele Svelto | 2011/02/23 06:27 AM |
The next revolution | Seni | 2011/02/23 09:03 AM |
The next revolution | Nicolas Capens | 2011/02/24 06:11 AM |
The next revolution | Seni | 2011/02/24 08:45 PM |
IGP sampler count | Nicolas Capens | 2011/03/03 05:19 AM |
Latency and throughput optimized cores | Nicolas Capens | 2011/03/07 03:28 PM |
The real reason no IGP /CPU converge. | Jouni Osmala | 2011/03/07 11:34 PM |
Still converging | Nicolas Capens | 2011/03/13 03:08 PM |
Homogeneous CPU advantages | Nicolas Capens | 2011/03/08 12:12 AM |
Homogeneous CPU advantages | Seni | 2011/03/08 09:23 AM |
Homogeneous CPU advantages | David Kanter | 2011/03/08 11:16 AM |
Homogeneous CPU advantages | Brett | 2011/03/09 03:37 AM |
Homogeneous CPU advantages | Jouni Osmala | 2011/03/09 12:27 AM |
SW Rasterization | firsttimeposter | 2011/02/03 11:18 PM |
SW Rasterization | Nicolas Capens | 2011/02/04 04:48 AM |
SW Rasterization | Eric Bron | 2011/02/04 05:14 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 08:36 AM |
SW Rasterization | Eric Bron | 2011/02/04 08:42 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/26 03:23 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/02/04 04:31 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/05 08:46 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/02/06 06:20 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/06 06:07 PM |
Sandy Bridge CPU article online | arch.comp | 2011/01/06 10:58 PM |
Sandy Bridge CPU article online | Seni | 2011/01/07 10:25 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 04:28 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 06:06 AM |
permuting vector elements (yet again) | hobold | 2011/01/05 05:15 PM |
permuting vector elements (yet again) | Nicolas Capens | 2011/01/06 06:11 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/05 12:46 PM |
wow ...! | hobold | 2011/01/05 05:19 PM |
wow ...! | Nicolas Capens | 2011/01/05 06:11 PM |
wow ...! | Eric Bron | 2011/01/05 10:46 PM |
compress LUT | Eric Bron | 2011/01/05 11:05 PM |
wow ...! | Michael S | 2011/01/06 02:25 AM |
wow ...! | Nicolas Capens | 2011/01/06 06:26 AM |
wow ...! | Eric Bron | 2011/01/06 09:08 AM |
wow ...! | Nicolas Capens | 2011/01/07 07:19 AM |
wow ...! | Steve Underwood | 2011/01/07 10:53 PM |
saturation | hobold | 2011/01/08 10:25 AM |
saturation | Steve Underwood | 2011/01/08 12:38 PM |
saturation | Michael S | 2011/01/08 01:05 PM |
128 bit floats | Brett | 2011/01/08 01:39 PM |
128 bit floats | Michael S | 2011/01/08 02:10 PM |
128 bit floats | Anil Maliyekkel | 2011/01/08 03:46 PM |
128 bit floats | Kevin G | 2011/02/27 11:15 AM |
128 bit floats | hobold | 2011/02/27 04:42 PM |
128 bit floats | Ian Ollmann | 2011/02/28 04:56 PM |
OpenCL FP accuracy | hobold | 2011/03/01 06:45 AM |
OpenCL FP accuracy | anon | 2011/03/01 08:03 PM |
OpenCL FP accuracy | hobold | 2011/03/02 03:53 AM |
OpenCL FP accuracy | Eric Bron | 2011/03/02 07:10 AM |
pet project | hobold | 2011/03/02 09:22 AM |
pet project | Anon | 2011/03/02 09:10 PM |
pet project | hobold | 2011/03/03 04:57 AM |
pet project | Eric Bron | 2011/03/03 02:29 AM |
pet project | hobold | 2011/03/03 05:14 AM |
pet project | Eric Bron | 2011/03/03 03:10 PM |
pet project | hobold | 2011/03/03 04:04 PM |
OpenCL and AMD | Vincent Diepeveen | 2011/03/07 01:44 PM |
OpenCL and AMD | Eric Bron | 2011/03/08 02:05 AM |
OpenCL and AMD | Vincent Diepeveen | 2011/03/08 08:27 AM |
128 bit floats | Michael S | 2011/02/27 04:46 PM |
128 bit floats | Anil Maliyekkel | 2011/02/27 06:14 PM |
saturation | Steve Underwood | 2011/01/17 04:42 AM |
wow ...! | hobold | 2011/01/06 05:05 PM |
Ring | Moritz | 2011/01/20 10:51 PM |
Ring | Antti-Ville Tuunainen | 2011/01/21 12:25 PM |
Ring | Moritz | 2011/01/23 01:38 AM |
Ring | Michael S | 2011/01/23 04:04 AM |
So fast | Moritz | 2011/01/23 07:57 AM |
So fast | David Kanter | 2011/01/23 10:05 AM |
Sandy Bridge CPU (L1D cache) | Gordon Ward | 2011/09/09 02:47 AM |
Sandy Bridge CPU (L1D cache) | David Kanter | 2011/09/09 04:19 PM |
Sandy Bridge CPU (L1D cache) | EduardoS | 2011/09/09 08:53 PM |
Sandy Bridge CPU (L1D cache) | Paul A. Clayton | 2011/09/10 05:12 AM |
Sandy Bridge CPU (L1D cache) | Michael S | 2011/09/10 09:41 AM |
Sandy Bridge CPU (L1D cache) | EduardoS | 2011/09/10 11:17 AM |
Address Ports on Sandy Bridge Scheduler | Victor | 2011/10/16 06:40 AM |
Address Ports on Sandy Bridge Scheduler | EduardoS | 2011/10/16 07:45 PM |
Address Ports on Sandy Bridge Scheduler | Megol | 2011/10/17 09:20 AM |
Address Ports on Sandy Bridge Scheduler | Victor | 2011/10/18 05:34 PM |
Benefits of early scheduling | Paul A. Clayton | 2011/10/18 06:53 PM |
Benefits of early scheduling | Victor | 2011/10/19 05:58 PM |
Consistency and invalidation ordering | Paul A. Clayton | 2011/10/20 04:43 AM |
Address Ports on Sandy Bridge Scheduler | John Upcroft | 2011/10/21 04:16 PM |
Address Ports on Sandy Bridge Scheduler | David Kanter | 2011/10/22 10:49 AM |
Address Ports on Sandy Bridge Scheduler | John Upcroft | 2011/10/26 01:24 PM |
Store TLB look-up at commit? | Paul A. Clayton | 2011/10/26 08:30 PM |
Store TLB look-up at commit? | Richard Scott | 2011/10/26 09:40 PM |
Just a guess | Paul A. Clayton | 2011/10/27 01:54 PM |