By: Nicolas Capens (nicolas.capens.delete@this.gmail.com), March 9, 2011 6:11 pm
Room: Moderated Discussions
Hi David,
David Kanter (dkanter@realworldtech.com) on 2/25/11 wrote:
---------------------------
>Nicolas Capens (nicolas.capens@gmail.com) on 2/24/11 wrote:
>---------------------------
>>>>To hide the latency of long dependency chains you need software pipelining, but
>>>>this increases register pressure (software pipelining uses architectural registers,
>>>>so renaming doesn't help here). FMA reduces the latency of the critical path a bit
>>>>so less software pipelining is needed, keeping register pressure low.
>>>>
>>>>Granted, the effect is small, but FMA is a bigger win on >register-impaired architectures like x86.
>>>
>>>Except that you don't have software pipelining on x86.
>>
>>Software pipelining does not require architectural >support. It's a reordering of
>>the instructions of a loop to take advantage of >independent iterations. This
>can be done manually or by >the compiler.
>
>I'm sorry, I made a terminology mistake. I wrote "SW pipelining", but really meant
>"HW features for SW pipelining". I was thinking of the various stuff in IA64 missing from x86.
>
>You can do SW pipelining on x86, but you may actually lose performance due to the
>uop cache in SNB (and loop caches in previous designs). Moreover, SW pipelining
>is less valuable on x86 because OOOE will take up the slack, and the ISA lacks the
>supporting features that IPF has (rotating registers, predication, etc.). That
>reduces the effectiveness of your SW pipelining and bloats up the code foot print.
>
>You are correct that SW pipelining does work for x86, but it's just not as big
>a win. Especially if you blow out the uop cache (when it could be a big loser).
In my experience software pipelining can be a significant win even for x86, because it breaks up dependency chains. And it looks like I'm not alone: http://www.springerlink.com/content/3485p7q146261803/
Sandy Bridge's uop cache is 1536 entries big, which the vast majority of software pipelined loops won't exceed. And even when it is exceeded, it's not that big of a loss. You've worded it quite nicely in your own Sandy Bridge review: "The uop cache was carefully designed so that it is an enhancement for Sandy Bridge and does not penalize any workloads."
>>>Instead, you have a large
>>>pool of rename registers - even larger than IPF's >>register file. So it's actually a non-issue.
>>
>>Register renaming merely helps avoid false dependencies >with out-of-order execution.
>>It doesn't help software pipelining.
>
>Sure it does. Multiple iterations of a loop can fit inside the OOO window, at
>which point they can be freely re-ordered and renamed to the same effect. Of course,
>if it's a big loop...it may not fit in the OOO window.
Exactly. The loops that benefit from software pipelining have long dependency chains that don't fit in the ROB. Register renaming doesn't help here.
>>It generally requires the use of more registers
>>in the actual code, and thus can cause unwanted spilling. >FMA may avoid some of that.
>
>This is entirely a tangent. FMA does not dynamically reduce the number of register
>reads and writes (which is what matters for power). In an OOO design, the result
>of the multiply is forwarded to the add, so they have the same number of register
>reads and writes. Moreover, by virtue of the renaming the extra ISA register needed
>for separate multiply and add is really a non-issue.
>
>The benefit is primarily in getting more compute per instruction.
Yes, I can live with that.
>>>>>If anything, FMA could only indirectly increase register pressure, because FMA-capable
>>>>>FPU is likely to have higher accumulator-to-result latency than dedicated FP_ADD unit.
>>>>
>>>>It appears to me only two gate delays are required to pass >the operand directly
>>>>to the adder.
>>>
>>>In most FMA architectures, an add is implemented by >>multiplying by 1. As it turns
>>>out, multiplying by 1 still takes cycles.
>>
>>You can instead just forward the operand directly to the >adder part (and gate the multiplier clock to save power).
>
>That's correct.
>
>>>>Since the current floating-point addition instruction >>>has >a 3-cycle
>>>>latency, this doesn't seem significant to me.
>>>
>>>What FMA instruction has a 3 cycle latency? I don't know >>of any architecture with a 3 cycle FMA latency...
>>
>>You don't need a 3 cycle FMA lantecy to get a 3 cycle ADD latency: http://www.acsel-lab.com/arithmetic/arith17/papers/ARITH17_Bruguera.pdf
>>
>>And here's an interesting article by AMD which hints at the FMA implementation they may use for Bulldozer: http://www.docstoc.com/docs/22731574/Bridged-Floating-Point-Fused-Multiply-Add-Design
>>
>>>
>
>I'm familiar with the work. The real question is how it turns out in silicon.
>You seem to believe that a 3 cycle FADD latency is feasible on such a design.
>I don't. I'm quite confident that Bulldozer will have more than 3 cycles of latency for FMA, FADD or FMUL.
>
>Increasing the latency is not great for performance and just goes against the prediction you made earlier.
Some sources indicate that the latency has been increased to 6 cycles for all these operations. But while this is indeed not ideal it can be hidden quite effectively with software pipelining. Also note that 6 cycles for FMA is still lower than 4+4 cycles on previous architectures. Furthermore, the research suggests there's still room for improvement.
>>>>FMA support will be added on the 22
>>>>nm process (some say it may arrive later) while the clock >frequency won't increase
>>>>by much due to power consumption, meaning there's more >headroom.
>>>
>>>Why would you think that? Intel and AMD engineers aren't >>idiots. If they had
>>>headroom, they would trade it for lower power.
>>
>>Indeed, they would trade it for lower power, except for >the critical paths.
>
>Critical paths in one part of the chip do not prevent engineers from using timing
>slack in other paths to decrease power.
>
>Intel, Oracle, Nvidia, IBM and AMD (pretty much everyone in fact) aggressively
>eliminate slack in timing paths (where possible) to lower dynamic power consumption and leakage.
>
>I'd like to point out that you came into this discussion claiming that you had
>a good understanding of hardware design. Yet you are making statements like this
>that are obviously false - it doesn't do much for credibility.
I'm saying the exact same thing as you!
>>The
>>end result is still a much more power efficient design but >with higher throughput and equal latency.
>
>Except what most of us are saying is that the latency will be higher.
That's just one implementation. And AMD may have traded latency for even better power efficiency. It's hard to tell what tradeoffs they made without having the actual hardware. In any case FMA support should overall be a significant win in performance/Watt.
>>It's not all or nothing. There are many interesting >compromises that can be made. In any case the CPU is >converging closer to the GPU in terms of compute density. >And other studies conclude that GPUs need result forwarding to handle more workloads efficiently: http://www.ece.wisc.edu/~wddd/2009/papers/wddd_01.pdf
>>Double convergence at the hardware level, and convergence >at the software level too.
>
>Just because it's written in an academic paper doesn't mean it will happen in real silicon.
That's not a counter-argument, just a generalization.
>>>>Even if it prevents
>>>>them from reducing the latency to 2 cycles, FMA won't make >things worse compared to today's situation.
>>>
>>>2 cycles for what?
>>
>>2 cycles for an isolated ADD unit due to the process headroom, which could be impossible
>>for an FMA unit with operand forwarding due to the extra gate delays. Anyway, it's
>>highly unlikely they had plans to aggressively reduce the latency anyhow, and would
>>save power instead. Even with the extra gate delays I >expect it to still save power,
>>double the throughput with FMA, and keep the ADD latency >the same.
>
>You've made a prediction, that Bulldozer will have a 3 cycle latency for the FMA/FADD/FMUL.
>This prediction is based upon your understanding of HW design.
I did not make a prediction. I laid out the theoretical possibilities. There can be many reasons why the effective latency ends up higher. They may for instance aim for high clock frequencies while keeping the power consumption acceptable. Or they may simply not have had the budget for a more optimal first implementation. That doesn't mean the theory for FMA is false.
Cheers,
Nicolas
David Kanter (dkanter@realworldtech.com) on 2/25/11 wrote:
---------------------------
>Nicolas Capens (nicolas.capens@gmail.com) on 2/24/11 wrote:
>---------------------------
>>>>To hide the latency of long dependency chains you need software pipelining, but
>>>>this increases register pressure (software pipelining uses architectural registers,
>>>>so renaming doesn't help here). FMA reduces the latency of the critical path a bit
>>>>so less software pipelining is needed, keeping register pressure low.
>>>>
>>>>Granted, the effect is small, but FMA is a bigger win on >register-impaired architectures like x86.
>>>
>>>Except that you don't have software pipelining on x86.
>>
>>Software pipelining does not require architectural >support. It's a reordering of
>>the instructions of a loop to take advantage of >independent iterations. This
>can be done manually or by >the compiler.
>
>I'm sorry, I made a terminology mistake. I wrote "SW pipelining", but really meant
>"HW features for SW pipelining". I was thinking of the various stuff in IA64 missing from x86.
>
>You can do SW pipelining on x86, but you may actually lose performance due to the
>uop cache in SNB (and loop caches in previous designs). Moreover, SW pipelining
>is less valuable on x86 because OOOE will take up the slack, and the ISA lacks the
>supporting features that IPF has (rotating registers, predication, etc.). That
>reduces the effectiveness of your SW pipelining and bloats up the code foot print.
>
>You are correct that SW pipelining does work for x86, but it's just not as big
>a win. Especially if you blow out the uop cache (when it could be a big loser).
In my experience software pipelining can be a significant win even for x86, because it breaks up dependency chains. And it looks like I'm not alone: http://www.springerlink.com/content/3485p7q146261803/
Sandy Bridge's uop cache is 1536 entries big, which the vast majority of software pipelined loops won't exceed. And even when it is exceeded, it's not that big of a loss. You've worded it quite nicely in your own Sandy Bridge review: "The uop cache was carefully designed so that it is an enhancement for Sandy Bridge and does not penalize any workloads."
>>>Instead, you have a large
>>>pool of rename registers - even larger than IPF's >>register file. So it's actually a non-issue.
>>
>>Register renaming merely helps avoid false dependencies >with out-of-order execution.
>>It doesn't help software pipelining.
>
>Sure it does. Multiple iterations of a loop can fit inside the OOO window, at
>which point they can be freely re-ordered and renamed to the same effect. Of course,
>if it's a big loop...it may not fit in the OOO window.
Exactly. The loops that benefit from software pipelining have long dependency chains that don't fit in the ROB. Register renaming doesn't help here.
>>It generally requires the use of more registers
>>in the actual code, and thus can cause unwanted spilling. >FMA may avoid some of that.
>
>This is entirely a tangent. FMA does not dynamically reduce the number of register
>reads and writes (which is what matters for power). In an OOO design, the result
>of the multiply is forwarded to the add, so they have the same number of register
>reads and writes. Moreover, by virtue of the renaming the extra ISA register needed
>for separate multiply and add is really a non-issue.
>
>The benefit is primarily in getting more compute per instruction.
Yes, I can live with that.
>>>>>If anything, FMA could only indirectly increase register pressure, because FMA-capable
>>>>>FPU is likely to have higher accumulator-to-result latency than dedicated FP_ADD unit.
>>>>
>>>>It appears to me only two gate delays are required to pass >the operand directly
>>>>to the adder.
>>>
>>>In most FMA architectures, an add is implemented by >>multiplying by 1. As it turns
>>>out, multiplying by 1 still takes cycles.
>>
>>You can instead just forward the operand directly to the >adder part (and gate the multiplier clock to save power).
>
>That's correct.
>
>>>>Since the current floating-point addition instruction >>>has >a 3-cycle
>>>>latency, this doesn't seem significant to me.
>>>
>>>What FMA instruction has a 3 cycle latency? I don't know >>of any architecture with a 3 cycle FMA latency...
>>
>>You don't need a 3 cycle FMA lantecy to get a 3 cycle ADD latency: http://www.acsel-lab.com/arithmetic/arith17/papers/ARITH17_Bruguera.pdf
>>
>>And here's an interesting article by AMD which hints at the FMA implementation they may use for Bulldozer: http://www.docstoc.com/docs/22731574/Bridged-Floating-Point-Fused-Multiply-Add-Design
>>
>>>
>
>I'm familiar with the work. The real question is how it turns out in silicon.
>You seem to believe that a 3 cycle FADD latency is feasible on such a design.
>I don't. I'm quite confident that Bulldozer will have more than 3 cycles of latency for FMA, FADD or FMUL.
>
>Increasing the latency is not great for performance and just goes against the prediction you made earlier.
Some sources indicate that the latency has been increased to 6 cycles for all these operations. But while this is indeed not ideal it can be hidden quite effectively with software pipelining. Also note that 6 cycles for FMA is still lower than 4+4 cycles on previous architectures. Furthermore, the research suggests there's still room for improvement.
>>>>FMA support will be added on the 22
>>>>nm process (some say it may arrive later) while the clock >frequency won't increase
>>>>by much due to power consumption, meaning there's more >headroom.
>>>
>>>Why would you think that? Intel and AMD engineers aren't >>idiots. If they had
>>>headroom, they would trade it for lower power.
>>
>>Indeed, they would trade it for lower power, except for >the critical paths.
>
>Critical paths in one part of the chip do not prevent engineers from using timing
>slack in other paths to decrease power.
>
>Intel, Oracle, Nvidia, IBM and AMD (pretty much everyone in fact) aggressively
>eliminate slack in timing paths (where possible) to lower dynamic power consumption and leakage.
>
>I'd like to point out that you came into this discussion claiming that you had
>a good understanding of hardware design. Yet you are making statements like this
>that are obviously false - it doesn't do much for credibility.
I'm saying the exact same thing as you!
>>The
>>end result is still a much more power efficient design but >with higher throughput and equal latency.
>
>Except what most of us are saying is that the latency will be higher.
That's just one implementation. And AMD may have traded latency for even better power efficiency. It's hard to tell what tradeoffs they made without having the actual hardware. In any case FMA support should overall be a significant win in performance/Watt.
>>It's not all or nothing. There are many interesting >compromises that can be made. In any case the CPU is >converging closer to the GPU in terms of compute density. >And other studies conclude that GPUs need result forwarding to handle more workloads efficiently: http://www.ece.wisc.edu/~wddd/2009/papers/wddd_01.pdf
>>Double convergence at the hardware level, and convergence >at the software level too.
>
>Just because it's written in an academic paper doesn't mean it will happen in real silicon.
That's not a counter-argument, just a generalization.
>>>>Even if it prevents
>>>>them from reducing the latency to 2 cycles, FMA won't make >things worse compared to today's situation.
>>>
>>>2 cycles for what?
>>
>>2 cycles for an isolated ADD unit due to the process headroom, which could be impossible
>>for an FMA unit with operand forwarding due to the extra gate delays. Anyway, it's
>>highly unlikely they had plans to aggressively reduce the latency anyhow, and would
>>save power instead. Even with the extra gate delays I >expect it to still save power,
>>double the throughput with FMA, and keep the ADD latency >the same.
>
>You've made a prediction, that Bulldozer will have a 3 cycle latency for the FMA/FADD/FMUL.
>This prediction is based upon your understanding of HW design.
I did not make a prediction. I laid out the theoretical possibilities. There can be many reasons why the effective latency ends up higher. They may for instance aim for high clock frequencies while keeping the power consumption acceptable. Or they may simply not have had the budget for a more optimal first implementation. That doesn't mean the theory for FMA is false.
Cheers,
Nicolas
Topic | Posted By | Date |
---|---|---|
Sandy Bridge CPU article online | David Kanter | 2010/09/26 09:35 PM |
Sandy Bridge CPU article online | Alex | 2010/09/27 05:22 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:06 AM |
Sandy Bridge CPU article online | someone | 2010/09/27 06:03 AM |
Sandy Bridge CPU article online | slacker | 2010/09/27 02:08 PM |
PowerPC is now Power | Paul A. Clayton | 2010/09/27 04:34 PM |
Sandy Bridge CPU article online | Dave | 2010/11/10 10:15 PM |
Sandy Bridge CPU article online | someone | 2010/09/27 06:23 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 06:39 PM |
Optimizing register clear | Paul A. Clayton | 2010/09/28 12:34 PM |
Sandy Bridge CPU article online | MS | 2010/09/27 06:54 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:15 AM |
Sandy Bridge CPU article online | MS | 2010/09/27 11:02 AM |
Sandy Bridge CPU article online | mpx | 2010/09/27 11:44 AM |
Sandy Bridge CPU article online | MS | 2010/09/27 02:37 PM |
Precisely | David Kanter | 2010/09/27 03:22 PM |
Sandy Bridge CPU article online | Richard Cownie | 2010/09/27 08:27 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 10:01 AM |
Sandy Bridge CPU article online | Richard Cownie | 2010/09/27 10:40 AM |
Sandy Bridge CPU article online | boots | 2010/09/27 11:19 AM |
Right, mid-2011, not 2010. Sorry (NT) | Richard Cownie | 2010/09/27 11:42 AM |
bulldozer single thread performance | Max | 2010/09/27 12:57 PM |
bulldozer single thread performance | Matt Waldhauer | 2011/03/02 11:32 AM |
Sandy Bridge CPU article online | Pun Zu | 2010/09/27 11:32 AM |
Sandy Bridge CPU article online | ? | 2010/09/27 11:44 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 01:11 PM |
My opinion is that anything that would take advantage of 256-bit AVX | redpriest | 2010/09/27 01:17 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/27 03:09 PM |
My opinion is that anything that would take advantage of 256-bit AVX | redpriest | 2010/09/27 04:06 PM |
My opinion is that anything that would take advantage of 256-bit AVX | David Kanter | 2010/09/27 05:23 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 03:57 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:35 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Matt Waldhauer | 2010/09/28 10:58 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/27 06:39 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:14 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Megol | 2010/09/28 02:17 AM |
My opinion is that anything that would take advantage of 256-bit AVX | Michael S | 2010/09/28 05:47 AM |
PGI | Carlie Coats | 2010/09/28 10:23 AM |
gfortran... | Carlie Coats | 2010/09/29 09:33 AM |
My opinion is that anything that would take advantage of 256-bit AVX | mpx | 2010/09/28 12:58 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Michael S | 2010/09/28 01:36 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Foo_ | 2010/09/29 01:08 AM |
My opinion is that anything that would take advantage of 256-bit AVX | mpx | 2010/09/28 11:37 AM |
My opinion is that anything that would take advantage of 256-bit AVX | Aaron Spink | 2010/09/28 01:19 PM |
My opinion is that anything that would take advantage of 256-bit AVX | hobold | 2010/09/28 03:08 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Ian Ollmann | 2010/09/28 04:26 PM |
My opinion is that anything that would take advantage of 256-bit AVX | Anthony | 2010/09/28 10:31 PM |
Sandy Bridge CPU article online | Hans de Vries | 2010/09/27 02:19 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 03:19 PM |
Sandy Bridge CPU article online | -Sweeper_ | 2010/09/27 05:50 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 06:41 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/27 02:55 PM |
Sandy Bridge CPU article online | line98 | 2010/09/27 03:05 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 03:20 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/27 03:23 PM |
Sandy Bridge CPU article online | line98 | 2010/09/27 03:42 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 09:33 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 04:04 PM |
Sandy Bridge CPU article online | Jack | 2010/09/27 04:40 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 11:47 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/27 11:54 PM |
Sandy Bridge CPU article online | Royi | 2010/09/27 11:59 PM |
Sandy Bridge CPU article online | JS | 2010/09/28 01:18 AM |
Sandy Bridge CPU article online | Royi | 2010/09/28 01:31 AM |
Sandy Bridge CPU article online | Jack | 2010/09/28 06:34 AM |
Sandy Bridge CPU article online | Royi | 2010/09/28 08:22 AM |
Sandy Bridge CPU article online | Foo_ | 2010/09/28 12:53 PM |
Sandy Bridge CPU article online | Paul | 2010/09/28 01:17 PM |
Sandy Bridge CPU article online | mpx | 2010/09/28 01:22 PM |
Sandy Bridge CPU article online | anonymous | 2010/09/28 02:06 PM |
Sandy Bridge CPU article online | IntelUser2000 | 2010/09/29 01:49 AM |
Sandy Bridge CPU article online | Jack | 2010/09/28 05:08 PM |
Sandy Bridge CPU article online | mpx | 2010/09/29 01:50 AM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/29 12:01 PM |
Sandy Bridge CPU article online | Royi | 2010/09/29 12:48 PM |
Sandy Bridge CPU article online | mpx | 2010/09/29 02:15 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/29 02:27 PM |
Sandy Bridge CPU article online | ? | 2010/09/29 11:18 PM |
Sandy Bridge CPU article online | savantu | 2010/09/30 12:28 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 03:43 AM |
Sandy Bridge CPU article online | gallier2 | 2010/09/30 04:18 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 08:38 AM |
Sandy Bridge CPU article online | David Hess | 2010/09/30 10:28 AM |
moderation (again) | hobold | 2010/10/01 05:08 AM |
Sandy Bridge CPU article online | Megol | 2010/09/30 02:13 AM |
Sandy Bridge CPU article online | ? | 2010/09/30 03:47 AM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 08:54 AM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 10:18 AM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 12:04 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 12:38 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/30 01:02 PM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 08:09 PM |
Sandy Bridge CPU article online | mpx | 2010/09/30 12:40 PM |
Sandy Bridge CPU article online | Linus Torvalds | 2010/09/30 01:00 PM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 08:44 PM |
Sandy Bridge CPU article online | David Hess | 2010/09/30 10:36 AM |
Sandy Bridge CPU article online | someone | 2010/09/30 11:23 AM |
Sandy Bridge CPU article online | mpx | 2010/09/30 01:50 PM |
wii lesson | Michael S | 2010/09/30 02:12 PM |
wii lesson | Dan Downs | 2010/09/30 03:33 PM |
wii lesson | Kevin G | 2010/10/01 12:27 AM |
wii lesson | Rohit | 2010/10/01 07:53 AM |
wii lesson | Kevin G | 2010/10/02 03:30 AM |
wii lesson | mpx | 2010/10/01 09:02 AM |
wii lesson | IntelUser2000 | 2010/10/01 09:31 AM |
GPUs and games | David Kanter | 2010/09/30 08:17 PM |
GPUs and games | hobold | 2010/10/01 05:27 AM |
GPUs and games | anonymous | 2010/10/01 06:35 AM |
GPUs and games | Gabriele Svelto | 2010/10/01 09:07 AM |
GPUs and games | Linus Torvalds | 2010/10/01 10:41 AM |
GPUs and games | Anon | 2010/10/01 11:23 AM |
Can Intel do *this* ??? | Mark Roulo | 2010/10/03 03:17 PM |
Can Intel do *this* ??? | Anon | 2010/10/03 03:29 PM |
Can Intel do *this* ??? | Mark Roulo | 2010/10/03 03:55 PM |
Can Intel do *this* ??? | Anon | 2010/10/03 05:45 PM |
Can Intel do *this* ??? | Ian Ameline | 2010/10/03 10:35 PM |
Graphics, IGPs, and Cache | Joe | 2010/10/10 09:51 AM |
Graphics, IGPs, and Cache | Anon | 2010/10/10 10:18 PM |
Graphics, IGPs, and Cache | Rohit | 2010/10/11 06:14 AM |
Graphics, IGPs, and Cache | hobold | 2010/10/11 06:43 AM |
Maybe the IGPU doesn't load into the L3 | Mark Roulo | 2010/10/11 08:05 AM |
Graphics, IGPs, and Cache | David Kanter | 2010/10/11 09:01 AM |
Can Intel do *this* ??? | Gabriele Svelto | 2010/10/04 12:31 AM |
Kanter's Law. | Ian Ameline | 2010/10/01 02:05 PM |
Kanter's Law. | David Kanter | 2010/10/01 02:18 PM |
Kanter's Law. | Ian Ameline | 2010/10/01 02:33 PM |
Kanter's Law. | Kevin G | 2010/10/01 04:19 PM |
Kanter's Law. | IntelUser2000 | 2010/10/01 10:36 PM |
Kanter's Law. | Kevin G | 2010/10/02 03:15 AM |
Kanter's Law. | IntelUser2000 | 2010/10/02 02:35 PM |
Wii vs pc's | Rohit | 2010/10/01 07:34 PM |
Wii vs pc's | Gabriele Svelto | 2010/10/01 11:54 PM |
GPUs and games | mpx | 2010/10/02 11:30 AM |
GPUs and games | Foo_ | 2010/10/02 04:03 PM |
GPUs and games | mpx | 2010/10/03 11:29 AM |
GPUs and games | Foo_ | 2010/10/03 01:52 PM |
GPUs and games | mpx | 2010/10/03 03:29 PM |
GPUs and games | Anon | 2010/10/03 03:49 PM |
GPUs and games | mpx | 2010/10/04 11:42 AM |
GPUs and games | MS | 2010/10/04 02:51 PM |
GPUs and games | Anon | 2010/10/04 08:29 PM |
persistence of vision | hobold | 2010/10/04 11:47 PM |
GPUs and games | mpx | 2010/10/05 12:51 AM |
GPUs and games | MS | 2010/10/05 06:49 AM |
GPUs and games | Jack | 2010/10/05 11:17 AM |
GPUs and games | MS | 2010/10/05 05:19 PM |
GPUs and games | Jack | 2010/10/05 11:11 AM |
GPUs and games | mpx | 2010/10/05 12:51 PM |
GPUs and games | David Kanter | 2010/10/06 09:04 AM |
GPUs and games | jack | 2010/10/06 09:34 PM |
GPUs and games | Linus Torvalds | 2010/10/05 07:29 AM |
GPUs and games | Foo_ | 2010/10/04 04:49 AM |
GPUs and games | Jeremiah | 2010/10/08 10:58 AM |
GPUs and games | MS | 2010/10/08 01:37 PM |
GPUs and games | Salvatore De Dominicis | 2010/10/04 01:41 AM |
GPUs and games | Kevin G | 2010/10/05 02:13 PM |
GPUs and games | mpx | 2010/10/03 11:36 AM |
GPUs and games | David Kanter | 2010/10/04 07:08 AM |
GPUs and games | Kevin G | 2010/10/04 10:38 AM |
Sandy Bridge CPU article online | NEON cortex | 2010/11/17 09:19 PM |
Sandy Bridge CPU article online | Ian Ameline | 2010/09/30 12:06 PM |
Sandy Bridge CPU article online | rwessel | 2010/09/30 02:29 PM |
Sandy Bridge CPU article online | Michael S | 2010/09/30 03:06 PM |
Sandy Bridge CPU article online | rwessel | 2010/09/30 06:55 PM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 03:53 AM |
Sandy Bridge CPU article online | rwessel | 2010/10/01 08:30 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 09:31 AM |
Sandy Bridge CPU article online | rwessel | 2010/10/01 10:56 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:28 PM |
Sandy Bridge CPU article online | Ricardo B | 2010/10/02 05:38 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/02 06:59 PM |
which bus more wasteful | Michael S | 2010/10/02 10:38 AM |
which bus more wasteful | rwessel | 2010/10/02 07:15 PM |
Sandy Bridge CPU article online | Ricardo B | 2010/10/01 10:08 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:31 PM |
Sandy Bridge CPU article online | Andi Kleen | 2010/10/01 11:55 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:32 PM |
Sandy Bridge CPU article online | kdg | 2010/10/01 11:26 AM |
Sandy Bridge CPU article online | Anon | 2010/10/01 11:33 AM |
Analog display out? | David Kanter | 2010/10/01 01:05 PM |
Analog display out? | mpx | 2010/10/02 11:46 AM |
Analog display out? | Anon | 2010/10/03 03:26 PM |
Digital is expensive! | David Kanter | 2010/10/03 06:36 PM |
Digital is expensive! | Anon | 2010/10/03 08:07 PM |
Digital is expensive! | David Kanter | 2010/10/03 10:02 PM |
Digital is expensive! | Steve Underwood | 2010/10/04 03:52 AM |
Digital is expensive! | David Kanter | 2010/10/04 07:03 AM |
Digital is expensive! | anonymous | 2010/10/04 07:11 AM |
Digital is not very expensive! | Steve Underwood | 2010/10/04 06:08 PM |
Digital is not very expensive! | Anon | 2010/10/04 08:33 PM |
Digital is not very expensive! | Steve Underwood | 2010/10/04 11:03 PM |
Digital is not very expensive! | mpx | 2010/10/05 01:10 PM |
Digital is not very expensive! | Gabriele Svelto | 2010/10/05 12:24 AM |
Digital is expensive! | jal142 | 2010/10/04 11:46 AM |
Digital is expensive! | mpx | 2010/10/04 01:04 AM |
Digital is expensive! | Gabriele Svelto | 2010/10/04 03:28 AM |
Digital is expensive! | Mark Christiansen | 2010/10/04 03:12 PM |
Analog display out? | slacker | 2010/10/03 06:44 PM |
Analog display out? | Anon | 2010/10/03 08:05 PM |
Analog display out? | Steve Underwood | 2010/10/04 03:48 AM |
Sandy Bridge CPU article online | David Hess | 2010/10/01 08:37 PM |
Sandy Bridge CPU article online | slacker | 2010/10/02 02:53 PM |
Sandy Bridge CPU article online | David Hess | 2010/10/02 06:49 PM |
memory bandwith | Max | 2010/09/30 12:19 PM |
memory bandwith | Anon | 2010/10/01 11:28 AM |
memory bandwith | Jack | 2010/10/01 07:45 PM |
memory bandwith | Anon | 2010/10/03 03:19 PM |
Sandy Bridge CPU article online | PiedPiper | 2010/09/30 07:05 PM |
Sandy Bridge CPU article online | Matt Sayler | 2010/09/29 04:38 PM |
Sandy Bridge CPU article online | Jack | 2010/09/29 09:39 PM |
Sandy Bridge CPU article online | mpx | 2010/09/30 12:24 AM |
Sandy Bridge CPU article online | passer | 2010/09/30 03:15 AM |
Sandy Bridge CPU article online | mpx | 2010/09/30 03:47 AM |
Sandy Bridge CPU article online | passer | 2010/09/30 04:25 AM |
SB and web browsing | Rohit | 2010/09/30 06:47 AM |
SB and web browsing | David Hess | 2010/09/30 07:10 AM |
SB and web browsing | MS | 2010/09/30 10:21 AM |
SB and web browsing | passer | 2010/09/30 10:26 AM |
SB and web browsing | MS | 2010/10/02 06:41 PM |
SB and web browsing | Rohit | 2010/10/01 08:02 AM |
Sandy Bridge CPU article online | David Kanter | 2010/09/30 08:35 AM |
Sandy Bridge CPU article online | Jack | 2010/09/30 10:40 PM |
processor evolution | hobold | 2010/09/29 02:16 PM |
processor evolution | Foo_ | 2010/09/30 06:10 AM |
processor evolution | Jack | 2010/09/30 07:07 PM |
3D gaming as GPGPU app | hobold | 2010/10/01 04:59 AM |
3D gaming as GPGPU app | Jack | 2010/10/01 07:39 PM |
processor evolution | hobold | 2010/10/01 04:35 AM |
processor evolution | David Kanter | 2010/10/01 10:02 AM |
processor evolution | Anon | 2010/10/01 11:46 AM |
Display | David Kanter | 2010/10/01 01:26 PM |
Display | Rohit | 2010/10/02 02:56 AM |
Display | Linus Torvalds | 2010/10/02 07:40 AM |
Display | rwessel | 2010/10/02 08:58 AM |
Display | sJ | 2010/10/02 10:28 PM |
Display | rwessel | 2010/10/03 08:38 AM |
Display | Anon | 2010/10/03 03:06 PM |
Display tech and compute are different | David Kanter | 2010/10/03 06:33 PM |
Display tech and compute are different | Anon | 2010/10/03 08:16 PM |
Display tech and compute are different | David Kanter | 2010/10/03 10:00 PM |
Display tech and compute are different | hobold | 2010/10/04 01:40 AM |
Display | ? | 2010/10/03 03:02 AM |
Display | Linus Torvalds | 2010/10/03 10:18 AM |
Display | Richard Cownie | 2010/10/03 11:12 AM |
Display | Linus Torvalds | 2010/10/03 12:16 PM |
Display | slacker | 2010/10/03 07:35 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/04 07:06 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/04 11:44 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/04 02:59 PM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/04 03:13 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/04 08:58 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/05 01:39 AM |
current V12 engines with >6.0 displacement | MS | 2010/10/05 06:57 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/05 01:20 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/05 09:26 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 05:39 AM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 01:22 PM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/06 03:07 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 03:56 PM |
current V12 engines with >6.0 displacement | rwessel | 2010/10/06 03:30 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 03:53 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/07 01:32 PM |
current V12 engines with >6.0 displacement | rwessel | 2010/10/07 07:54 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 09:02 PM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | slacker | 2010/10/06 07:20 PM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | Ricardo B | 2010/10/07 01:32 AM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | slacker | 2010/10/07 08:15 AM |
Top Gear is awful, and Jeremy Clarkson cannot drive. | Ricardo B | 2010/10/07 10:51 AM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 05:03 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/06 06:26 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 11:15 PM |
current V12 engines with >6.0 displacement | Howard Chu | 2010/10/07 02:16 PM |
current V12 engines with >6.0 displacement | Anon | 2010/10/05 10:31 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 05:55 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/06 06:15 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/06 06:34 AM |
I wonder is there any tech area that this forum doesn't have an opinion on (NT) | Rob Thorpe | 2010/10/06 10:11 AM |
Cunieform tablets | David Kanter | 2010/10/06 12:57 PM |
Cunieform tablets | Linus Torvalds | 2010/10/06 01:06 PM |
Ouch...maybe I should hire a new editor (NT) | David Kanter | 2010/10/06 04:38 PM |
Cunieform tablets | rwessel | 2010/10/06 03:41 PM |
Cunieform tablets | seni | 2010/10/07 10:56 AM |
Cunieform tablets | Howard Chu | 2010/10/07 01:44 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/06 06:10 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/06 10:44 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 07:55 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:51 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 07:38 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:33 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 09:04 PM |
Practical vehicles for commuting | Rob Thorpe | 2010/10/08 05:50 AM |
Practical vehicles for commuting | Gabriele Svelto | 2010/10/08 06:05 AM |
Practical vehicles for commuting | Rob Thorpe | 2010/10/08 06:21 AM |
Practical vehicles for commuting | j | 2010/10/08 02:20 PM |
Practical vehicles for commuting | Rob Thorpe | 2010/12/09 07:00 AM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/08 10:14 AM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/07 01:23 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/07 04:08 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 05:41 PM |
current V12 engines with >6.0 displacement | slacker | 2010/10/07 08:05 PM |
current V12 engines with >6.0 displacement | anonymous | 2010/10/07 08:52 PM |
current V12 engines with >6.0 displacement | Anonymous | 2010/10/08 07:52 PM |
current V12 engines with >6.0 displacement | anon | 2010/10/06 11:28 PM |
current V12 engines with >6.0 displacement | Aaron Spink | 2010/10/07 12:37 AM |
current V12 engines with >6.0 displacement | Ricardo B | 2010/10/07 01:37 AM |
current V12 engines with >6.0 displacement | slacker | 2010/10/05 02:02 AM |
Display | Linus Torvalds | 2010/10/04 10:39 AM |
Display | Gabriele Svelto | 2010/10/05 12:34 AM |
Display | Richard Cownie | 2010/10/04 06:22 AM |
Display | anon | 2010/10/04 09:22 PM |
Display | Richard Cownie | 2010/10/05 06:42 AM |
Display | mpx | 2010/10/03 11:55 AM |
Display | rcf | 2010/10/03 01:12 PM |
Display | mpx | 2010/10/03 02:36 PM |
Display | rcf | 2010/10/03 05:36 PM |
Display | Ricardo B | 2010/10/04 02:50 PM |
Display | gallier2 | 2010/10/05 03:44 AM |
Display | David Hess | 2010/10/05 05:21 AM |
Display | gallier2 | 2010/10/05 08:21 AM |
Display | David Hess | 2010/10/03 11:21 PM |
Display | rcf | 2010/10/04 08:06 AM |
Display | David Kanter | 2010/10/03 01:54 PM |
Alternative integration | Paul A. Clayton | 2010/10/06 08:51 AM |
Display | slacker | 2010/10/03 07:26 PM |
Display & marketing & analogies | ? | 2010/10/04 02:33 AM |
Display & marketing & analogies | kdg | 2010/10/04 06:00 AM |
Display | Kevin G | 2010/10/02 09:49 AM |
Display | Anon | 2010/10/03 03:43 PM |
Sandy Bridge CPU article online | David Kanter | 2010/09/29 03:17 PM |
Sandy Bridge CPU article online | Jack | 2010/09/28 06:27 AM |
Sandy Bridge CPU article online | IntelUser2000 | 2010/09/28 03:07 AM |
Sandy Bridge CPU article online | mpx | 2010/09/28 12:34 PM |
Sandy Bridge CPU article online | Aaron Spink | 2010/09/28 01:28 PM |
Sandy Bridge CPU article online | JoshW | 2010/09/28 02:13 PM |
Sandy Bridge CPU article online | mpx | 2010/09/28 02:54 PM |
Sandy Bridge CPU article online | Foo_ | 2010/09/29 01:19 AM |
Sandy Bridge CPU article online | mpx | 2010/09/29 03:06 AM |
Sandy Bridge CPU article online | JS | 2010/09/29 03:42 AM |
Sandy Bridge CPU article online | mpx | 2010/09/29 04:03 AM |
Sandy Bridge CPU article online | Foo_ | 2010/09/29 05:55 AM |
Sandy Bridge CPU article online | ajensen | 2010/09/28 12:19 AM |
Sandy Bridge CPU article online | Ian Ollmann | 2010/09/28 04:52 PM |
Sandy Bridge CPU article online | a reader | 2010/09/28 05:05 PM |
Sandy Bridge CPU article online | ajensen | 2010/09/28 11:35 PM |
Updated: Sandy Bridge CPU article | David Kanter | 2010/10/01 05:11 AM |
Updated: Sandy Bridge CPU article | anon | 2011/01/07 09:55 PM |
Updated: Sandy Bridge CPU article | Eric Bron | 2011/01/08 03:29 AM |
Updated: Sandy Bridge CPU article | anon | 2011/01/11 11:24 PM |
Updated: Sandy Bridge CPU article | anon | 2011/01/15 11:21 AM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anon | 2011/01/16 11:22 PM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anonymous | 2011/01/17 02:04 AM |
David Kanter can you shed some light? Re Updated: Sandy Bridge CPU article | anon | 2011/01/17 07:12 AM |
I can try.... | David Kanter | 2011/01/18 03:54 PM |
I can try.... | anon | 2011/01/18 08:07 PM |
I can try.... | David Kanter | 2011/01/18 11:24 PM |
I can try.... | anon | 2011/01/19 07:51 AM |
Wider fetch than execute makes sense | Paul A. Clayton | 2011/01/19 08:53 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/04 07:29 AM |
Sandy Bridge CPU article online | Seni | 2011/01/04 09:07 PM |
Sandy Bridge CPU article online | hobold | 2011/01/04 11:26 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 02:01 AM |
software assist exceptions | hobold | 2011/01/05 04:36 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 01:58 AM |
Sandy Bridge CPU article online | anon | 2011/01/05 04:51 AM |
Sandy Bridge CPU article online | Seni | 2011/01/05 08:53 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 09:03 AM |
Sandy Bridge CPU article online | anon | 2011/01/05 04:14 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 04:50 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/05 05:00 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 07:26 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/05 07:50 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 08:39 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 03:50 PM |
permuting vector elements | hobold | 2011/01/05 05:03 PM |
permuting vector elements | Nicolas Capens | 2011/01/05 06:01 PM |
permuting vector elements | Nicolas Capens | 2011/01/06 08:27 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/11 11:33 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/11 01:51 PM |
Sandy Bridge CPU article online | hobold | 2011/01/11 02:11 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/11 06:07 PM |
Sandy Bridge CPU article online | Michael S | 2011/01/12 03:25 AM |
Sandy Bridge CPU article online | hobold | 2011/01/12 05:03 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/12 11:27 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/13 02:38 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/13 03:32 AM |
Sandy Bridge CPU article online | hobold | 2011/01/13 01:53 PM |
What happened to VPERMIL2PS? | Michael S | 2011/01/13 03:46 AM |
What happened to VPERMIL2PS? | Eric Bron | 2011/01/13 06:46 AM |
Lower cost permute | Paul A. Clayton | 2011/01/13 12:11 PM |
Sandy Bridge CPU article online | anon | 2011/01/25 06:31 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/12 06:34 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/13 07:38 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/15 09:47 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/01/16 03:13 AM |
And just to make a further example | Gabriele Svelto | 2011/01/16 04:24 AM |
Sandy Bridge CPU article online | mpx | 2011/01/16 01:27 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/25 02:56 PM |
Sandy Bridge CPU article online | David Kanter | 2011/01/25 04:11 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/26 08:49 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/26 04:35 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/27 02:51 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/27 02:40 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/28 03:24 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/28 03:49 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/30 02:11 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/31 03:43 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/01 04:02 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/01 04:28 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/01 04:43 AM |
Sandy Bridge CPU article online | EduardoS | 2011/01/28 07:14 PM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/01 02:58 AM |
Sandy Bridge CPU article online | EduardoS | 2011/02/01 02:36 PM |
Sandy Bridge CPU article online | anon | 2011/02/01 04:56 PM |
Sandy Bridge CPU article online | EduardoS | 2011/02/01 09:17 PM |
Sandy Bridge CPU article online | anon | 2011/02/01 10:13 PM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/02 04:08 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/02/02 04:26 AM |
Sandy Bridge CPU article online | kalmaegi | 2011/02/01 09:29 AM |
SW Rasterization | David Kanter | 2011/01/27 05:18 PM |
Lower pin count memory | iz | 2011/01/27 09:19 PM |
Lower pin count memory | David Kanter | 2011/01/27 09:25 PM |
Lower pin count memory | iz | 2011/01/27 11:31 PM |
Lower pin count memory | David Kanter | 2011/01/27 11:52 PM |
Lower pin count memory | iz | 2011/01/28 12:28 AM |
Lower pin count memory | David Kanter | 2011/01/28 01:05 AM |
Lower pin count memory | iz | 2011/01/28 03:55 AM |
Lower pin count memory | David Hess | 2011/01/28 01:15 PM |
Lower pin count memory | David Kanter | 2011/01/28 01:57 PM |
Lower pin count memory | iz | 2011/01/28 05:20 PM |
Two years later | ForgotPants | 2013/10/26 11:33 AM |
Two years later | anon | 2013/10/26 11:36 AM |
Two years later | Exophase | 2013/10/26 12:56 PM |
Two years later | David Hess | 2013/10/26 05:05 PM |
Herz is totally the thing you DON*T care. | Jouni Osmala | 2013/10/27 01:48 AM |
Herz is totally the thing you DON*T care. | EduardoS | 2013/10/27 07:00 AM |
Herz is totally the thing you DON*T care. | Michael S | 2013/10/27 07:45 AM |
Two years later | someone | 2013/10/28 07:21 AM |
Lower pin count memory | Martin Høyer Kristiansen | 2011/01/28 01:41 AM |
Lower pin count memory | iz | 2011/01/28 03:07 AM |
Lower pin count memory | Darrell Coker | 2011/01/27 10:39 PM |
Lower pin count memory | iz | 2011/01/28 12:20 AM |
Lower pin count memory | Darrell Coker | 2011/01/28 06:07 PM |
Lower pin count memory | iz | 2011/01/28 11:57 PM |
Lower pin count memory | Darrell Coker | 2011/01/29 02:21 AM |
Lower pin count memory | iz | 2011/01/31 10:28 PM |
SW Rasterization | Nicolas Capens | 2011/02/02 08:48 AM |
SW Rasterization | Eric Bron | 2011/02/02 09:37 AM |
SW Rasterization | Nicolas Capens | 2011/02/02 04:35 PM |
SW Rasterization | Eric Bron | 2011/02/02 05:11 PM |
SW Rasterization | Eric Bron | 2011/02/03 02:13 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 07:57 AM |
SW Rasterization | Eric Bron | 2011/02/04 08:50 AM |
erratum | Eric Bron | 2011/02/04 08:58 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 05:25 PM |
SW Rasterization | David Kanter | 2011/02/04 05:33 PM |
SW Rasterization | anon | 2011/02/04 06:04 PM |
SW Rasterization | Nicolas Capens | 2011/02/05 03:39 PM |
SW Rasterization | David Kanter | 2011/02/05 05:07 PM |
SW Rasterization | Nicolas Capens | 2011/02/05 11:39 PM |
SW Rasterization | Eric Bron | 2011/02/04 10:55 AM |
Comments pt 1 | David Kanter | 2011/02/02 01:08 PM |
Comments pt 1 | Eric Bron | 2011/02/02 03:16 PM |
Comments pt 1 | Gabriele Svelto | 2011/02/03 01:37 AM |
Comments pt 1 | Eric Bron | 2011/02/03 02:36 AM |
Comments pt 1 | Nicolas Capens | 2011/02/03 11:08 PM |
Comments pt 1 | Nicolas Capens | 2011/02/03 10:26 PM |
Comments pt 1 | Eric Bron | 2011/02/04 03:33 AM |
Comments pt 1 | Nicolas Capens | 2011/02/04 05:24 AM |
example code | Eric Bron | 2011/02/04 04:51 AM |
example code | Nicolas Capens | 2011/02/04 08:24 AM |
example code | Eric Bron | 2011/02/04 08:36 AM |
example code | Nicolas Capens | 2011/02/05 11:43 PM |
Comments pt 1 | Rohit | 2011/02/04 12:43 PM |
Comments pt 1 | Nicolas Capens | 2011/02/04 05:05 PM |
Comments pt 1 | David Kanter | 2011/02/04 05:36 PM |
Comments pt 1 | Nicolas Capens | 2011/02/05 02:45 PM |
Comments pt 1 | Eric Bron | 2011/02/05 04:13 PM |
Comments pt 1 | Nicolas Capens | 2011/02/05 11:52 PM |
Comments pt 1 | Eric Bron | 2011/02/06 01:31 AM |
Comments pt 1 | Nicolas Capens | 2011/02/06 04:06 PM |
Comments pt 1 | Eric Bron | 2011/02/07 03:12 AM |
The need for gather/scatter support | Nicolas Capens | 2011/02/10 10:07 AM |
The need for gather/scatter support | Eric Bron | 2011/02/11 03:11 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/13 03:39 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 07:46 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:48 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 09:32 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 10:07 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 09:00 AM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:49 AM |
Gather/scatter performance data | Eric Bron | 2011/02/15 02:23 AM |
Gather/scatter performance data | Eric Bron | 2011/02/13 05:06 PM |
Gather/scatter performance data | Nicolas Capens | 2011/02/14 07:52 AM |
Gather/scatter performance data | Eric Bron | 2011/02/14 09:43 AM |
SW Rasterization - a long way off | Rohit | 2011/02/02 01:17 PM |
SW Rasterization - a long way off | Nicolas Capens | 2011/02/04 03:59 AM |
CPU only rendering - a long way off | Rohit | 2011/02/04 11:52 AM |
CPU only rendering - a long way off | Nicolas Capens | 2011/02/04 07:15 PM |
CPU only rendering - a long way off | Rohit | 2011/02/05 02:00 AM |
CPU only rendering - a long way off | Nicolas Capens | 2011/02/05 09:45 PM |
CPU only rendering - a long way off | David Kanter | 2011/02/06 09:51 PM |
CPU only rendering - a long way off | Gian-Carlo Pascutto | 2011/02/07 12:22 AM |
Encryption | David Kanter | 2011/02/07 01:18 AM |
Encryption | Nicolas Capens | 2011/02/07 07:51 AM |
Encryption | David Kanter | 2011/02/07 11:50 AM |
Encryption | Nicolas Capens | 2011/02/08 10:26 AM |
CPUs are latency optimized | David Kanter | 2011/02/08 11:38 AM |
efficient compiler on an efficient GPU real today. | sJ | 2011/02/08 11:29 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/09 09:49 PM |
CPUs are latency optimized | Eric Bron | 2011/02/10 12:49 AM |
CPUs are latency optimized | Antti-Ville Tuunainen | 2011/02/10 06:16 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/10 07:04 AM |
CPUs are latency optimized | Eric Bron | 2011/02/10 07:48 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/10 01:31 PM |
CPUs are latency optimized | Eric Bron | 2011/02/11 02:43 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/11 07:31 AM |
CPUs are latency optimized | EduardoS | 2011/02/10 05:29 PM |
CPUs are latency optimized | Anon | 2011/02/10 06:40 PM |
CPUs are latency optimized | David Kanter | 2011/02/10 08:33 PM |
CPUs are latency optimized | EduardoS | 2011/02/11 02:18 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/11 05:56 AM |
CPUs are latency optimized | Rohit | 2011/02/11 07:33 AM |
CPUs are latency optimized | Nicolas Capens | 2011/02/14 02:19 AM |
CPUs are latency optimized | Eric Bron | 2011/02/14 03:23 AM |
CPUs are latency optimized | EduardoS | 2011/02/14 01:11 PM |
CPUs are latency optimized | David Kanter | 2011/02/11 02:45 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/15 05:22 AM |
CPUs are latency optimized | David Kanter | 2011/02/15 12:47 PM |
CPUs are latency optimized | Nicolas Capens | 2011/02/15 07:10 PM |
Have fun | David Kanter | 2011/02/15 10:04 PM |
Have fun | Nicolas Capens | 2011/02/17 03:59 AM |
Have fun | Brett | 2011/02/17 12:56 PM |
Have fun | Nicolas Capens | 2011/02/19 04:53 PM |
Have fun | Brett | 2011/02/20 06:08 PM |
Have fun | Brett | 2011/02/20 07:13 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/02/23 05:37 PM |
On-die storage to fight Amdahl | Brett | 2011/02/23 09:59 PM |
On-die storage to fight Amdahl | Brett | 2011/02/23 10:08 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/02/24 07:42 PM |
On-die storage to fight Amdahl | Rohit | 2011/02/25 11:02 PM |
On-die storage to fight Amdahl | Nicolas Capens | 2011/03/09 06:53 PM |
On-die storage to fight Amdahl | Rohit | 2011/03/10 08:02 AM |
NVIDIA using tile based rendering? | Nathan Monson | 2011/03/11 07:58 PM |
NVIDIA using tile based rendering? | Rohit | 2011/03/12 04:29 AM |
NVIDIA using tile based rendering? | Nathan Monson | 2011/03/12 11:05 AM |
NVIDIA using tile based rendering? | Rohit | 2011/03/12 11:16 AM |
On-die storage to fight Amdahl | Brett | 2011/02/26 02:10 AM |
On-die storage to fight Amdahl | Nathan Monson | 2011/02/26 01:51 PM |
On-die storage to fight Amdahl | Brett | 2011/02/26 04:40 PM |
Convergence is inevitable | Nicolas Capens | 2011/03/09 08:22 PM |
Convergence is inevitable | Brett | 2011/03/09 10:59 PM |
Convergence is inevitable | Antti-Ville Tuunainen | 2011/03/10 03:34 PM |
Convergence is inevitable | Brett | 2011/03/10 09:39 PM |
Procedural texturing? | David Kanter | 2011/03/11 01:32 AM |
Procedural texturing? | hobold | 2011/03/11 03:59 AM |
Procedural texturing? | Dan Downs | 2011/03/11 09:28 AM |
Procedural texturing? | Mark Roulo | 2011/03/11 02:58 PM |
Procedural texturing? | Anon | 2011/03/11 06:11 PM |
Procedural texturing? | Nathan Monson | 2011/03/11 07:30 PM |
Procedural texturing? | Brett | 2011/03/15 07:45 AM |
Procedural texturing? | Seni | 2011/03/15 10:13 AM |
Procedural texturing? | Brett | 2011/03/15 11:45 AM |
Procedural texturing? | Seni | 2011/03/15 02:09 PM |
Procedural texturing? | Brett | 2011/03/11 10:02 PM |
Procedural texturing? | Brett | 2011/03/11 09:34 PM |
Procedural texturing? | Eric Bron | 2011/03/12 03:37 AM |
Convergence is inevitable | Jouni Osmala | 2011/03/09 11:28 PM |
Convergence is inevitable | Brett | 2011/04/05 05:08 PM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 05:23 AM |
Convergence is inevitable | none | 2011/04/07 07:03 AM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 10:34 AM |
Convergence is inevitable | anon | 2011/04/07 02:15 PM |
Convergence is inevitable | none | 2011/04/08 01:57 AM |
Convergence is inevitable | Brett | 2011/04/07 08:04 PM |
Convergence is inevitable | none | 2011/04/08 02:14 AM |
Gather implementation | David Kanter | 2011/04/08 12:01 PM |
RAM Latency | David Hess | 2011/04/07 08:22 AM |
RAM Latency | Brett | 2011/04/07 07:20 PM |
RAM Latency | Nicolas Capens | 2011/04/07 10:18 PM |
RAM Latency | Brett | 2011/04/08 05:33 AM |
RAM Latency | Nicolas Capens | 2011/04/10 02:23 PM |
RAM Latency | Rohit | 2011/04/08 06:57 AM |
RAM Latency | Nicolas Capens | 2011/04/10 01:23 PM |
RAM Latency | David Kanter | 2011/04/10 02:27 PM |
RAM Latency | Rohit | 2011/04/11 06:17 AM |
Convergence is inevitable | Eric Bron | 2011/04/07 09:46 AM |
Convergence is inevitable | Nicolas Capens | 2011/04/07 09:50 PM |
Convergence is inevitable | Eric Bron | 2011/04/08 12:39 AM |
Flaws in PowerVR | Rohit | 2011/02/25 11:21 PM |
Flaws in PowerVR | Brett | 2011/02/26 12:37 AM |
Flaws in PowerVR | Paul | 2011/02/26 05:17 AM |
Have fun | David Kanter | 2011/02/18 12:52 PM |
Have fun | Michael S | 2011/02/19 12:12 PM |
Have fun | David Kanter | 2011/02/19 03:26 PM |
Have fun | Michael S | 2011/02/19 04:43 PM |
Have fun | anon | 2011/02/19 05:02 PM |
Have fun | Michael S | 2011/02/19 05:56 PM |
Have fun | anon | 2011/02/20 03:50 PM |
Have fun | EduardoS | 2011/02/20 02:44 PM |
Linear vs non-linear | EduardoS | 2011/02/20 02:55 PM |
Have fun | Michael S | 2011/02/20 04:19 PM |
Have fun | EduardoS | 2011/02/20 05:51 PM |
Have fun | Nicolas Capens | 2011/02/21 11:12 AM |
Have fun | Michael S | 2011/02/21 12:38 PM |
Have fun | Eric Bron | 2011/02/21 02:10 PM |
Have fun | Eric Bron | 2011/02/21 02:39 PM |
Have fun | Michael S | 2011/02/21 06:13 PM |
Have fun | Eric Bron | 2011/02/22 12:43 AM |
Have fun | Michael S | 2011/02/22 01:47 AM |
Have fun | Eric Bron | 2011/02/22 02:10 AM |
Have fun | Michael S | 2011/02/22 11:37 AM |
Have fun | anon | 2011/02/22 01:38 PM |
Have fun | EduardoS | 2011/02/22 03:49 PM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/23 06:37 PM |
Gather/scatter efficiency | anonymous | 2011/02/23 06:51 PM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/24 06:57 PM |
Gather/scatter efficiency | anonymous | 2011/02/24 07:16 PM |
Gather/scatter efficiency | Michael S | 2011/02/25 07:45 AM |
Gather implementation | David Kanter | 2011/02/25 05:34 PM |
Gather implementation | Michael S | 2011/02/26 10:40 AM |
Gather implementation | anon | 2011/02/26 11:52 AM |
Gather implementation | Michael S | 2011/02/26 12:16 PM |
Gather implementation | anon | 2011/02/26 11:22 PM |
Gather implementation | Michael S | 2011/02/27 07:23 AM |
Gather/scatter efficiency | Nicolas Capens | 2011/02/28 03:14 PM |
Consider yourself ignored | David Kanter | 2011/02/22 01:05 AM |
one more anti-FMA flame. By me. | Michael S | 2011/02/16 07:40 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/16 08:30 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/16 09:15 AM |
one more anti-FMA flame. By me. | Nicolas Capens | 2011/02/17 06:27 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/17 07:42 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/17 05:46 PM |
Tarantula paper | Paul A. Clayton | 2011/02/18 12:38 AM |
Tarantula paper | Nicolas Capens | 2011/02/19 05:19 PM |
anti-FMA != anti-throughput or anti-SG | Eric Bron | 2011/02/18 01:48 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/20 03:46 PM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/20 05:00 PM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 04:05 AM |
Software pipelining on x86 | David Kanter | 2011/02/23 05:04 AM |
Software pipelining on x86 | JS | 2011/02/23 05:25 AM |
Software pipelining on x86 | Salvatore De Dominicis | 2011/02/23 08:37 AM |
Software pipelining on x86 | Jouni Osmala | 2011/02/23 09:10 AM |
Software pipelining on x86 | LeeMiller | 2011/02/23 10:07 PM |
Software pipelining on x86 | Nicolas Capens | 2011/02/24 03:17 PM |
Software pipelining on x86 | anonymous | 2011/02/24 07:04 PM |
Software pipelining on x86 | Nicolas Capens | 2011/02/28 09:27 AM |
Software pipelining on x86 | Antti-Ville Tuunainen | 2011/03/02 04:31 AM |
Software pipelining on x86 | Megol | 2011/03/02 12:55 PM |
Software pipelining on x86 | Geert Bosch | 2011/03/03 07:58 AM |
FMA benefits and latency predictions | David Kanter | 2011/02/25 05:14 PM |
FMA benefits and latency predictions | Antti-Ville Tuunainen | 2011/02/26 10:43 AM |
FMA benefits and latency predictions | Matt Waldhauer | 2011/02/27 06:42 AM |
FMA benefits and latency predictions | Nicolas Capens | 2011/03/09 06:11 PM |
FMA benefits and latency predictions | Rohit | 2011/03/10 08:11 AM |
FMA benefits and latency predictions | Eric Bron | 2011/03/10 09:30 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/23 05:19 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 07:50 AM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/23 10:37 AM |
FMA and beyond | Nicolas Capens | 2011/02/24 04:47 PM |
detour on terminology | hobold | 2011/02/24 07:08 PM |
detour on terminology | Nicolas Capens | 2011/02/28 02:24 PM |
detour on terminology | Eric Bron | 2011/03/01 02:38 AM |
detour on terminology | Michael S | 2011/03/01 05:03 AM |
detour on terminology | Eric Bron | 2011/03/01 05:39 AM |
detour on terminology | Michael S | 2011/03/01 08:33 AM |
detour on terminology | Eric Bron | 2011/03/01 09:34 AM |
erratum | Eric Bron | 2011/03/01 09:54 AM |
detour on terminology | Nicolas Capens | 2011/03/10 08:39 AM |
detour on terminology | Eric Bron | 2011/03/10 09:50 AM |
anti-FMA != anti-throughput or anti-SG | Nicolas Capens | 2011/02/23 06:12 AM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 11:25 PM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/17 06:51 PM |
Tarantula vector unit well-integrated | Paul A. Clayton | 2011/02/18 12:38 AM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/19 02:17 PM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 02:09 AM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/20 09:55 AM |
anti-FMA != anti-throughput or anti-SG | David Kanter | 2011/02/20 01:39 PM |
anti-FMA != anti-throughput or anti-SG | EduardoS | 2011/02/20 02:35 PM |
anti-FMA != anti-throughput or anti-SG | Megol | 2011/02/21 08:12 AM |
anti-FMA != anti-throughput or anti-SG | anon | 2011/02/17 10:44 PM |
anti-FMA != anti-throughput or anti-SG | Michael S | 2011/02/18 06:20 AM |
one more anti-FMA flame. By me. | Eric Bron | 2011/02/17 08:24 AM |
thanks | Michael S | 2011/02/17 04:56 PM |
CPUs are latency optimized | EduardoS | 2011/02/15 01:24 PM |
SwiftShader SNB test | Eric Bron | 2011/02/15 03:46 PM |
SwiftShader NHM test | Eric Bron | 2011/02/15 04:50 PM |
SwiftShader SNB test | Nicolas Capens | 2011/02/17 12:06 AM |
SwiftShader SNB test | Eric Bron | 2011/02/17 01:21 AM |
SwiftShader SNB test | Eric Bron | 2011/02/22 10:32 AM |
SwiftShader SNB test 2nd run | Eric Bron | 2011/02/22 10:51 AM |
SwiftShader SNB test 2nd run | Nicolas Capens | 2011/02/23 02:14 PM |
SwiftShader SNB test 2nd run | Eric Bron | 2011/02/23 02:42 PM |
Win7SP1 out but no AVX hype? | Michael S | 2011/02/24 03:14 AM |
Win7SP1 out but no AVX hype? | Eric Bron | 2011/02/24 03:39 AM |
CPUs are latency optimized | Eric Bron | 2011/02/15 08:02 AM |
CPUs are latency optimized | EduardoS | 2011/02/11 03:40 PM |
CPU only rendering - not a long way off | Nicolas Capens | 2011/02/07 06:45 AM |
CPU only rendering - not a long way off | David Kanter | 2011/02/07 12:09 PM |
CPU only rendering - not a long way off | anonymous | 2011/02/07 10:25 PM |
Sandy Bridge IGP EUs | David Kanter | 2011/02/07 11:22 PM |
Sandy Bridge IGP EUs | Hannes | 2011/02/08 05:59 AM |
SW Rasterization - Why? | Seni | 2011/02/02 02:53 PM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/10 03:12 PM |
Market reasons to ditch the IGP | Seni | 2011/02/11 05:42 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/16 04:29 AM |
Market reasons to ditch the IGP | Seni | 2011/02/16 01:39 PM |
An excellent post! | David Kanter | 2011/02/16 03:18 PM |
CPUs clock higher | Moritz | 2011/02/17 08:06 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/18 06:22 PM |
Market reasons to ditch the IGP | IntelUser2000 | 2011/02/18 07:20 PM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/21 02:42 PM |
Bad data (repeated) | David Kanter | 2011/02/22 12:21 AM |
Bad data (repeated) | none | 2011/02/22 03:04 AM |
13W or 8W? | Foo_ | 2011/02/22 06:00 AM |
13W or 8W? | Linus Torvalds | 2011/02/22 08:58 AM |
13W or 8W? | David Kanter | 2011/02/22 11:33 AM |
13W or 8W? | Mark Christiansen | 2011/02/22 02:47 PM |
Bigger picture | Nicolas Capens | 2011/02/24 06:33 PM |
Bigger picture | Nicolas Capens | 2011/02/24 08:06 PM |
20+ Watt | Nicolas Capens | 2011/02/24 08:18 PM |
<20W | David Kanter | 2011/02/25 01:13 PM |
>20W | Nicolas Capens | 2011/03/08 07:34 PM |
IGP is 3X more efficient | David Kanter | 2011/03/08 10:53 PM |
IGP is 3X more efficient | Eric Bron | 2011/03/09 02:44 AM |
>20W | Eric Bron | 2011/03/09 03:48 AM |
Specious data and claims are still specious | David Kanter | 2011/02/25 02:38 AM |
IGP power consumption, LRB samplers | Nicolas Capens | 2011/03/08 06:24 PM |
IGP power consumption, LRB samplers | EduardoS | 2011/03/08 06:52 PM |
IGP power consumption, LRB samplers | Rohit | 2011/03/09 07:42 AM |
Market reasons to ditch the IGP | none | 2011/02/22 02:58 AM |
Market reasons to ditch the IGP | Nicolas Capens | 2011/02/24 06:43 PM |
Market reasons to ditch the IGP | slacker | 2011/02/22 02:32 PM |
Market reasons to ditch the IGP | Seni | 2011/02/18 09:51 PM |
Correction - 28 comparators, not 36. (NT) | Seni | 2011/02/18 10:03 PM |
Market reasons to ditch the IGP | Gabriele Svelto | 2011/02/19 01:49 AM |
Market reasons to ditch the IGP | Seni | 2011/02/19 11:59 AM |
Market reasons to ditch the IGP | Exophase | 2011/02/20 10:43 AM |
Market reasons to ditch the IGP | EduardoS | 2011/02/19 10:13 AM |
Market reasons to ditch the IGP | Seni | 2011/02/19 11:46 AM |
The next revolution | Nicolas Capens | 2011/02/22 03:33 AM |
The next revolution | Gabriele Svelto | 2011/02/22 09:15 AM |
The next revolution | Eric Bron | 2011/02/22 09:48 AM |
The next revolution | Nicolas Capens | 2011/02/23 07:39 PM |
The next revolution | Gabriele Svelto | 2011/02/24 12:43 AM |
GPGPU content creation (or lack of it) | Nicolas Capens | 2011/02/28 07:39 AM |
GPGPU content creation (or lack of it) | The market begs to differ | 2011/03/01 06:32 AM |
GPGPU content creation (or lack of it) | Nicolas Capens | 2011/03/09 09:14 PM |
GPGPU content creation (or lack of it) | Gabriele Svelto | 2011/03/10 01:01 AM |
The market begs to differ | Gabriele Svelto | 2011/03/01 06:33 AM |
The next revolution | Anon | 2011/02/24 02:15 AM |
The next revolution | Nicolas Capens | 2011/02/28 02:34 PM |
The next revolution | Seni | 2011/02/22 02:02 PM |
The next revolution | Gabriele Svelto | 2011/02/23 06:27 AM |
The next revolution | Seni | 2011/02/23 09:03 AM |
The next revolution | Nicolas Capens | 2011/02/24 06:11 AM |
The next revolution | Seni | 2011/02/24 08:45 PM |
IGP sampler count | Nicolas Capens | 2011/03/03 05:19 AM |
Latency and throughput optimized cores | Nicolas Capens | 2011/03/07 03:28 PM |
The real reason no IGP /CPU converge. | Jouni Osmala | 2011/03/07 11:34 PM |
Still converging | Nicolas Capens | 2011/03/13 03:08 PM |
Homogeneous CPU advantages | Nicolas Capens | 2011/03/08 12:12 AM |
Homogeneous CPU advantages | Seni | 2011/03/08 09:23 AM |
Homogeneous CPU advantages | David Kanter | 2011/03/08 11:16 AM |
Homogeneous CPU advantages | Brett | 2011/03/09 03:37 AM |
Homogeneous CPU advantages | Jouni Osmala | 2011/03/09 12:27 AM |
SW Rasterization | firsttimeposter | 2011/02/03 11:18 PM |
SW Rasterization | Nicolas Capens | 2011/02/04 04:48 AM |
SW Rasterization | Eric Bron | 2011/02/04 05:14 AM |
SW Rasterization | Nicolas Capens | 2011/02/04 08:36 AM |
SW Rasterization | Eric Bron | 2011/02/04 08:42 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/26 03:23 AM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/02/04 04:31 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/05 08:46 PM |
Sandy Bridge CPU article online | Gabriele Svelto | 2011/02/06 06:20 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/02/06 06:07 PM |
Sandy Bridge CPU article online | arch.comp | 2011/01/06 10:58 PM |
Sandy Bridge CPU article online | Seni | 2011/01/07 10:25 AM |
Sandy Bridge CPU article online | Michael S | 2011/01/05 04:28 AM |
Sandy Bridge CPU article online | Nicolas Capens | 2011/01/05 06:06 AM |
permuting vector elements (yet again) | hobold | 2011/01/05 05:15 PM |
permuting vector elements (yet again) | Nicolas Capens | 2011/01/06 06:11 AM |
Sandy Bridge CPU article online | Eric Bron | 2011/01/05 12:46 PM |
wow ...! | hobold | 2011/01/05 05:19 PM |
wow ...! | Nicolas Capens | 2011/01/05 06:11 PM |
wow ...! | Eric Bron | 2011/01/05 10:46 PM |
compress LUT | Eric Bron | 2011/01/05 11:05 PM |
wow ...! | Michael S | 2011/01/06 02:25 AM |
wow ...! | Nicolas Capens | 2011/01/06 06:26 AM |
wow ...! | Eric Bron | 2011/01/06 09:08 AM |
wow ...! | Nicolas Capens | 2011/01/07 07:19 AM |
wow ...! | Steve Underwood | 2011/01/07 10:53 PM |
saturation | hobold | 2011/01/08 10:25 AM |
saturation | Steve Underwood | 2011/01/08 12:38 PM |
saturation | Michael S | 2011/01/08 01:05 PM |
128 bit floats | Brett | 2011/01/08 01:39 PM |
128 bit floats | Michael S | 2011/01/08 02:10 PM |
128 bit floats | Anil Maliyekkel | 2011/01/08 03:46 PM |
128 bit floats | Kevin G | 2011/02/27 11:15 AM |
128 bit floats | hobold | 2011/02/27 04:42 PM |
128 bit floats | Ian Ollmann | 2011/02/28 04:56 PM |
OpenCL FP accuracy | hobold | 2011/03/01 06:45 AM |
OpenCL FP accuracy | anon | 2011/03/01 08:03 PM |
OpenCL FP accuracy | hobold | 2011/03/02 03:53 AM |
OpenCL FP accuracy | Eric Bron | 2011/03/02 07:10 AM |
pet project | hobold | 2011/03/02 09:22 AM |
pet project | Anon | 2011/03/02 09:10 PM |
pet project | hobold | 2011/03/03 04:57 AM |
pet project | Eric Bron | 2011/03/03 02:29 AM |
pet project | hobold | 2011/03/03 05:14 AM |
pet project | Eric Bron | 2011/03/03 03:10 PM |
pet project | hobold | 2011/03/03 04:04 PM |
OpenCL and AMD | Vincent Diepeveen | 2011/03/07 01:44 PM |
OpenCL and AMD | Eric Bron | 2011/03/08 02:05 AM |
OpenCL and AMD | Vincent Diepeveen | 2011/03/08 08:27 AM |
128 bit floats | Michael S | 2011/02/27 04:46 PM |
128 bit floats | Anil Maliyekkel | 2011/02/27 06:14 PM |
saturation | Steve Underwood | 2011/01/17 04:42 AM |
wow ...! | hobold | 2011/01/06 05:05 PM |
Ring | Moritz | 2011/01/20 10:51 PM |
Ring | Antti-Ville Tuunainen | 2011/01/21 12:25 PM |
Ring | Moritz | 2011/01/23 01:38 AM |
Ring | Michael S | 2011/01/23 04:04 AM |
So fast | Moritz | 2011/01/23 07:57 AM |
So fast | David Kanter | 2011/01/23 10:05 AM |
Sandy Bridge CPU (L1D cache) | Gordon Ward | 2011/09/09 02:47 AM |
Sandy Bridge CPU (L1D cache) | David Kanter | 2011/09/09 04:19 PM |
Sandy Bridge CPU (L1D cache) | EduardoS | 2011/09/09 08:53 PM |
Sandy Bridge CPU (L1D cache) | Paul A. Clayton | 2011/09/10 05:12 AM |
Sandy Bridge CPU (L1D cache) | Michael S | 2011/09/10 09:41 AM |
Sandy Bridge CPU (L1D cache) | EduardoS | 2011/09/10 11:17 AM |
Address Ports on Sandy Bridge Scheduler | Victor | 2011/10/16 06:40 AM |
Address Ports on Sandy Bridge Scheduler | EduardoS | 2011/10/16 07:45 PM |
Address Ports on Sandy Bridge Scheduler | Megol | 2011/10/17 09:20 AM |
Address Ports on Sandy Bridge Scheduler | Victor | 2011/10/18 05:34 PM |
Benefits of early scheduling | Paul A. Clayton | 2011/10/18 06:53 PM |
Benefits of early scheduling | Victor | 2011/10/19 05:58 PM |
Consistency and invalidation ordering | Paul A. Clayton | 2011/10/20 04:43 AM |
Address Ports on Sandy Bridge Scheduler | John Upcroft | 2011/10/21 04:16 PM |
Address Ports on Sandy Bridge Scheduler | David Kanter | 2011/10/22 10:49 AM |
Address Ports on Sandy Bridge Scheduler | John Upcroft | 2011/10/26 01:24 PM |
Store TLB look-up at commit? | Paul A. Clayton | 2011/10/26 08:30 PM |
Store TLB look-up at commit? | Richard Scott | 2011/10/26 09:40 PM |
Just a guess | Paul A. Clayton | 2011/10/27 01:54 PM |