By: Vincent Diepeveen (diep.delete@this.xs4all.nl), June 27, 2011 1:01 pm
Room: Moderated Discussions
Jonathan Kang (johnbk@gmail.com) on 6/22/11 wrote:
---------------------------
>One thing to note is that around 45nm and below, a temperature inversion effect
>occurs where going below 0C (peak performance is actually around ~15C or so) actually increases circuit delay.
>
>In fact, at 28nm, gate-delay is worse at -30C than it is at 125C.
>
>This is due to the dominance of surface inversion effects -- which raises threshold
>voltage -- at low-drain currents, which happens to correlate with smaller feature sizes.
Do i interpret this correct that dehydrated water cooling, which is obviously not much below room temperature, that this is the most ideal form of cooling for overclocking and optimal power usage?
---------------------------
>One thing to note is that around 45nm and below, a temperature inversion effect
>occurs where going below 0C (peak performance is actually around ~15C or so) actually increases circuit delay.
>
>In fact, at 28nm, gate-delay is worse at -30C than it is at 125C.
>
>This is due to the dominance of surface inversion effects -- which raises threshold
>voltage -- at low-drain currents, which happens to correlate with smaller feature sizes.
Do i interpret this correct that dehydrated water cooling, which is obviously not much below room temperature, that this is the most ideal form of cooling for overclocking and optimal power usage?
Topic | Posted By | Date |
---|---|---|
Article: Cooling and performance/watt | David Kanter | 2011/06/21 12:19 PM |
'temperature' not 'power'? | Paul A. Clayton | 2011/06/21 03:01 PM |
'temperature' not 'power'? | David Kanter | 2011/06/21 03:38 PM |
resistance(temperature) | Moritz | 2011/06/22 04:48 AM |
resistance(temperature) | Adrian | 2011/06/22 05:13 AM |
resistance(temperature) | David Hess | 2011/06/22 08:53 AM |
resistance(temperature) | Adrian | 2011/06/24 02:24 AM |
resistance(temperature) | David Hess | 2011/06/24 02:14 PM |
Article: Cooling and performance/watt | Ed Trice | 2011/06/22 10:57 AM |
Cooling | David Kanter | 2011/06/22 03:26 PM |
Cooling | Ed Trice | 2011/06/22 03:54 PM |
TE-elements | Moritz | 2011/06/23 05:55 AM |
Radiator placement and design | Ricardo B | 2011/06/23 07:34 AM |
TE-elements | EduardoS | 2011/06/23 04:21 PM |
water/air | Moritz | 2011/06/23 10:30 PM |
water/air | Ricardo B | 2011/06/24 02:29 PM |
water/air | bakaneko | 2011/06/24 09:45 PM |
water/air | David Hess | 2011/06/25 04:12 AM |
water/air | Ricardo B | 2011/06/25 06:07 AM |
water/air | ZaZa | 2011/06/25 09:47 AM |
water/air | Ricardo B | 2011/06/25 11:40 AM |
water/air | rwessel | 2011/06/26 03:43 AM |
water/air | ZaZa | 2011/06/26 04:05 PM |
Temperature inversion | Jonathan Kang | 2011/06/22 05:43 PM |
LN2 overclocking | Doug Siebert | 2011/06/25 01:32 PM |
Temperature inversion | Vincent Diepeveen | 2011/06/27 01:01 PM |
Temperature inversion | Anon | 2011/06/28 03:30 PM |
Temperature inversion | Jonathan Kang | 2011/07/05 06:38 PM |
Article: Cooling and performance/watt | (tm) | 2011/06/27 05:51 AM |
Article: Cooling and performance/watt | David | 2011/10/15 06:14 PM |
Article: Cooling and performance/watt | rwessel | 2011/10/15 09:56 PM |
Exponential growth of subthreshold leakage | Konrad Schwarz | 2011/12/15 07:56 AM |
Exponential growth of subthreshold leakage | Rohit | 2011/12/15 01:22 PM |
Exponential growth of subthreshold leakage | David Kanter | 2011/12/15 04:20 PM |
Exponential growth of subthreshold leakage | Iain McClatchie | 2013/01/07 12:28 AM |
Exponential growth of subthreshold leakage | Doug S | 2013/01/07 10:25 AM |
Exponential growth of subthreshold leakage | someone | 2013/01/07 11:12 PM |
Article: Cooling and performance/watt | Robert Pearson | 2021/07/26 09:45 AM |