By: David Kanter (dkanter.delete@this.realworldtech.com), July 25, 2012 11:28 am
Room: Moderated Discussions
someone (someone.delete@this.somewhere.com) on July 25, 2012 9:58 am wrote:
> David Kanter (dkanter.delete@this.realworldtech.com) on July 25, 2012 1:37 am
> wrote:
> > New computational efficiency data shows GPUs with a clear edge over
> CPUs, but
> > the gap is narrowing as CPUs adopt wide vectors (e.g. AVX).
> Surprisingly, a
> > throughput CPU is the most energy efficient processor,
> offering hope for future
> > architectures. Our data also shows some
> advantages of AMD's Bulldozer, and the
> > overhead associated with highly
> scalable server CPUs.
> >
> > Comments and feedback
> > welcome!
> >
>
> > David
>
> Calling FLOPS/W and FLOPs/mm2 efficiency is highly misleading
> because it has no
> concept of effective FLOPs while doing something useful. The
> FP functional units
> of a general purpose MPU is a tiny fraction of device area
> and power budget. Why?
That's right, no cache, no branch prediction, no bypassing, no store forwarding, etc.
There's a reason why I focus on compute efficiency, as opposed to performance efficiency. Compute != performance.
> Everything else there SUPPORTS feeding those units
> over a huge spectrum of usage
> in terms of data access and control complexity
> without demanding quite unreasonable
> effort and methods for programming. GPUs
> have less silicon overhead per FP unit
> because they are very less generally
> useful. For HPC algorithms with complex data
> access and control paths GPUs are
> hugely inefficient and can only approach a tiny
> fraction of their theoretical
> peak FLOPs. Why hasn't anyone run published a SPECfp
> score running entirely on
> a GPU yet? :-D
I totally agree. The easiest way to see that is to compare the cache for say, IVB (2MB/core) vs. Fermi (guessing ~64KB/core).
> In a modern process I could tile a 200 mm2 die with nothing
> but FMACs and clock
> and power distribution and blow away everything on your
> graph but it would not be
> capable of anything useful. But hey, what
> "efficiency" woot!
I agree (see Tilera!). However, if you want to talk about realizable FP performance, now you need to pick a workload.
What workload should we use?
What meaningful workload has been run (and reported) on all of those systems?
The closest is Linpack, but that hasn't been run on the T4 for obvious reasons.
No, what this chart measures is the *BEST CASE* for a GPU (i.e. something akin to Linpack). Any real workload will change the positions substantially and more complex ones will show that GPUs are less efficient.
David
> David Kanter (dkanter.delete@this.realworldtech.com) on July 25, 2012 1:37 am
> wrote:
> > New computational efficiency data shows GPUs with a clear edge over
> CPUs, but
> > the gap is narrowing as CPUs adopt wide vectors (e.g. AVX).
> Surprisingly, a
> > throughput CPU is the most energy efficient processor,
> offering hope for future
> > architectures. Our data also shows some
> advantages of AMD's Bulldozer, and the
> > overhead associated with highly
> scalable server CPUs.
> >
> > Comments and feedback
> > welcome!
> >
>
> > David
>
> Calling FLOPS/W and FLOPs/mm2 efficiency is highly misleading
> because it has no
> concept of effective FLOPs while doing something useful. The
> FP functional units
> of a general purpose MPU is a tiny fraction of device area
> and power budget. Why?
That's right, no cache, no branch prediction, no bypassing, no store forwarding, etc.
There's a reason why I focus on compute efficiency, as opposed to performance efficiency. Compute != performance.
> Everything else there SUPPORTS feeding those units
> over a huge spectrum of usage
> in terms of data access and control complexity
> without demanding quite unreasonable
> effort and methods for programming. GPUs
> have less silicon overhead per FP unit
> because they are very less generally
> useful. For HPC algorithms with complex data
> access and control paths GPUs are
> hugely inefficient and can only approach a tiny
> fraction of their theoretical
> peak FLOPs. Why hasn't anyone run published a SPECfp
> score running entirely on
> a GPU yet? :-D
I totally agree. The easiest way to see that is to compare the cache for say, IVB (2MB/core) vs. Fermi (guessing ~64KB/core).
> In a modern process I could tile a 200 mm2 die with nothing
> but FMACs and clock
> and power distribution and blow away everything on your
> graph but it would not be
> capable of anything useful. But hey, what
> "efficiency" woot!
I agree (see Tilera!). However, if you want to talk about realizable FP performance, now you need to pick a workload.
What workload should we use?
What meaningful workload has been run (and reported) on all of those systems?
The closest is Linpack, but that hasn't been run on the T4 for obvious reasons.
No, what this chart measures is the *BEST CASE* for a GPU (i.e. something akin to Linpack). Any real workload will change the positions substantially and more complex ones will show that GPUs are less efficient.
David
Topic | Posted By | Date |
---|---|---|
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/25 01:37 AM |
New Article: Compute Efficiency 2012 | SHK | 2012/07/25 02:31 AM |
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/25 02:42 AM |
New Article: Compute Efficiency 2012 | none | 2012/07/25 03:18 AM |
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/25 11:25 AM |
GCN (NT) | EBFE | 2012/07/25 03:25 AM |
GCN - TFLOP DP | jp | 2012/08/09 01:58 PM |
GCN - TFLOP DP | David Kanter | 2012/08/09 03:32 PM |
GCN - TFLOP DP | Kevin G | 2012/08/11 05:22 PM |
GCN - TFLOP DP | Eric | 2012/08/09 05:12 PM |
GCN - TFLOP DP | jp | 2012/08/10 01:23 AM |
GCN - TFLOP DP | EBFE | 2012/08/12 08:27 PM |
GCN - TFLOP DP | jp | 2012/08/13 02:02 AM |
GCN - TFLOP DP | EBFE | 2012/08/13 07:45 PM |
GCN - TFLOP DP | jp | 2012/08/14 01:21 AM |
New Article: Compute Efficiency 2012 | Adrian | 2012/07/25 04:39 AM |
New Article: Compute Efficiency 2012 | EBFE | 2012/07/25 09:33 AM |
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/25 11:11 AM |
New Article: Compute Efficiency 2012 | sf | 2012/07/25 06:46 AM |
New Article: Compute Efficiency 2012 | aaron spink | 2012/07/25 09:08 AM |
New Article: Compute Efficiency 2012 | someone | 2012/07/25 10:06 AM |
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/25 11:14 AM |
New Article: Compute Efficiency 2012 | EBFE | 2012/07/26 02:27 AM |
BG/Q | David Kanter | 2012/07/26 09:31 AM |
VR-ZONE KNC B0 leak, poor number? | EBFE | 2012/08/03 01:57 AM |
VR-ZONE KNC B0 leak, poor number? | Eric | 2012/08/03 07:59 AM |
VR-ZONE KNC B0 leak, poor number? | EBFE | 2012/08/04 06:37 AM |
VR-ZONE KNC B0 leak, poor number? | aaron spink | 2012/08/04 06:51 PM |
Leaks != products | David Kanter | 2012/08/05 03:19 AM |
Leaks != products | EBFE | 2012/08/06 02:49 AM |
VR-ZONE KNC B0 leak, poor number? | Eric | 2012/08/05 10:37 AM |
VR-ZONE KNC B0 leak, poor number? | EBFE | 2012/08/06 03:09 AM |
VR-ZONE KNC B0 leak, poor number? | aaron spink | 2012/08/06 04:33 AM |
VR-ZONE KNC B0 leak, poor number? | jp | 2012/08/07 03:08 AM |
VR-ZONE KNC B0 leak, poor number? | Eric | 2012/08/07 04:58 AM |
VR-ZONE KNC B0 leak, poor number? | jp | 2012/08/07 05:17 AM |
VR-ZONE KNC B0 leak, poor number? | Eric | 2012/08/07 05:22 AM |
VR-ZONE KNC B0 leak, poor number? | anonymou5 | 2012/08/07 09:43 AM |
VR-ZONE KNC B0 leak, poor number? | jp | 2012/08/07 05:23 AM |
VR-ZONE KNC B0 leak, poor number? | aaron spink | 2012/08/07 07:24 AM |
VR-ZONE KNC B0 leak, poor number? | aaron spink | 2012/08/07 07:20 AM |
VR-ZONE KNC B0 leak, poor number? | jp | 2012/08/07 11:22 AM |
VR-ZONE KNC B0 leak, poor number? | EduardoS | 2012/08/07 03:15 PM |
KNC has FMA | David Kanter | 2012/08/07 09:17 AM |
New Article: Compute Efficiency 2012 | forestlaughing | 2012/07/25 08:51 AM |
New Article: Compute Efficiency 2012 | Eric | 2012/07/27 05:12 AM |
New Article: Compute Efficiency 2012 | hobold | 2012/07/27 11:53 AM |
New Article: Compute Efficiency 2012 | Eric | 2012/07/27 12:51 PM |
New Article: Compute Efficiency 2012 | hobold | 2012/07/27 02:48 PM |
New Article: Compute Efficiency 2012 | Eric | 2012/07/27 03:29 PM |
New Article: Compute Efficiency 2012 | anon | 2012/07/29 02:25 AM |
New Article: Compute Efficiency 2012 | hobold | 2012/07/29 11:53 AM |
Efficiency? No, lack of highly useful features | someone | 2012/07/25 09:58 AM |
Best case for GPUs | David Kanter | 2012/07/25 11:28 AM |
Best case for GPUs | franzliszt | 2012/07/25 01:39 PM |
Best case for GPUs | Chuck | 2012/07/25 08:13 PM |
Best case for GPUs | David Kanter | 2012/07/25 09:45 PM |
Best case for GPUs | Eric | 2012/07/27 05:51 AM |
Silverthorn data point | Michael S | 2012/07/25 02:45 PM |
Silverthorn data point | David Kanter | 2012/07/25 04:06 PM |
New Article: Compute Efficiency 2012 | Unununium | 2012/07/25 05:55 PM |
New Article: Compute Efficiency 2012 | EduardoS | 2012/07/25 08:12 PM |
Ops... I'm wrong... | EduardoS | 2012/07/25 08:14 PM |
New Article: Compute Efficiency 2012 | TacoBell | 2012/07/25 08:36 PM |
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/25 09:49 PM |
New Article: Compute Efficiency 2012 | Michael S | 2012/07/26 02:33 AM |
Line and factor | Moritz | 2012/07/26 01:34 AM |
Line and factor | Peter Boyle | 2012/07/27 07:57 AM |
not entirely | Moritz | 2012/07/27 12:22 PM |
Line and factor | EduardoS | 2012/07/27 05:24 PM |
Line and factor | Moritz | 2012/07/28 12:52 PM |
tables | Michael S | 2012/07/26 02:39 AM |
Interlagos L2+L3 | Rana | 2012/07/26 03:13 AM |
Interlagos L2+L3 | Rana | 2012/07/26 03:13 AM |
Interlagos L2+L3 | David Kanter | 2012/07/26 09:21 AM |
SP vs DP & performance metrics | jp | 2012/07/27 07:08 AM |
SP vs DP & performance metrics | Eric | 2012/07/27 07:57 AM |
SP vs DP & performance metrics | jp | 2012/07/27 09:18 AM |
SP vs DP & performance metrics | aaron spink | 2012/07/27 09:36 AM |
SP vs DP & performance metrics | jp | 2012/07/27 09:47 AM |
"Global" --> system | Paul A. Clayton | 2012/07/27 10:31 AM |
"Global" --> system | jp | 2012/07/27 03:55 PM |
"Global" --> system | aaron spink | 2012/07/27 07:33 PM |
"Global" --> system | jp | 2012/07/28 02:00 AM |
"Global" --> system | aaron spink | 2012/07/28 06:54 AM |
"Global" --> system | jp | 2012/07/29 02:12 AM |
"Global" --> system | aaron spink | 2012/07/29 05:03 AM |
"Global" --> system | none | 2012/07/29 09:05 AM |
"Global" --> system | EduardoS | 2012/07/29 10:26 AM |
"Global" --> system | jp | 2012/07/30 02:24 AM |
"Global" --> system | aaron spink | 2012/07/30 03:05 AM |
"Global" --> system | aaron spink | 2012/07/30 03:03 AM |
daxpy is STREAM TRIAD | Paul A. Clayton | 2012/07/30 06:10 AM |
SP vs DP & performance metrics | aaron spink | 2012/07/27 07:25 PM |
SP vs DP & performance metrics | Emil Briggs | 2012/07/28 06:40 AM |
SP vs DP & performance metrics | aaron spink | 2012/07/28 07:05 AM |
SP vs DP & performance metrics | jp | 2012/07/28 11:04 AM |
SP vs DP & performance metrics | Brett | 2012/07/28 03:32 PM |
SP vs DP & performance metrics | Emil Briggs | 2012/07/28 06:11 PM |
SP vs DP & performance metrics | anon | 2012/07/29 02:53 AM |
SP vs DP & performance metrics | aaron spink | 2012/07/29 05:39 AM |
Coherency for discretes | Rohit | 2012/07/29 09:24 AM |
SP vs DP & performance metrics | anon | 2012/07/29 11:09 AM |
SP vs DP & performance metrics | Eric | 2012/07/29 01:08 PM |
SP vs DP & performance metrics | aaron spink | 2012/07/27 09:25 AM |
Regular updates? | Joe | 2012/07/27 09:35 AM |
New Article: Compute Efficiency 2012 | 309 | 2012/07/27 10:34 PM |
New Article: Compute Efficiency 2012 | Ingeneer | 2012/07/30 09:01 AM |
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/30 01:11 PM |
New Article: Compute Efficiency 2012 | Ingeneer | 2012/07/30 08:04 PM |
New Article: Compute Efficiency 2012 | David Kanter | 2012/07/30 09:32 PM |
Memory power and bandwidth? | Iain McClatchie | 2012/08/03 04:35 PM |
Memory power and bandwidth? | David Kanter | 2012/08/04 11:22 AM |
Memory power and bandwidth? | Michael S | 2012/08/04 02:36 PM |
Memory power and bandwidth? | Iain McClatchie | 2012/08/06 02:09 PM |
Memory power and bandwidth? | Eric | 2012/08/07 06:28 PM |
Workloads | David Kanter | 2012/08/08 10:49 AM |
Workloads | Eric | 2012/08/09 05:21 PM |
Latency and bandwidth bottlenecks | Paul A. Clayton | 2012/08/08 04:02 PM |
Latency and bandwidth bottlenecks | Eric | 2012/08/09 05:32 PM |
Latency and bandwidth bottlenecks | none | 2012/08/10 06:06 AM |
Latency and bandwidth bottlenecks -> BDP | ajensen | 2012/08/11 03:21 PM |
Memory power and bandwidth? | Ingeneer | 2012/08/06 11:26 AM |
NV aims for 1.8+ TFLOPS DP ? | jp | 2012/08/11 01:21 PM |
NV aims for 1.8+ TFLOPS DP ? | David Kanter | 2012/08/11 09:25 PM |
NV aims for 1.8+ TFLOPS DP ? | jp | 2012/08/12 02:45 AM |
NV aims for 1.8+ TFLOPS DP ? | EBFE | 2012/08/12 10:02 PM |
NV aims for 1.8+ TFLOPS DP ? | jp | 2012/08/13 01:54 AM |
NV aims for 1.8+ TFLOPS DP ? | Gabriele Svelto | 2012/08/13 09:16 AM |
NV aims for 1.8+ TFLOPS DP ? | Vincent Diepeveen | 2012/08/14 03:04 AM |
NV aims for 1.8+ TFLOPS DP ? | David Kanter | 2012/08/13 09:50 AM |
NV aims for 1.8+ TFLOPS DP ? | jp | 2012/08/13 11:17 AM |
NV aims for 1.8+ TFLOPS DP ? | EduardoS | 2012/08/13 06:45 AM |