An elaborate theory of why AMD64 succeeded

By: (0xe2.0x9a.0x9b.delete@this.gmail.com), August 21, 2013 6:47 am
Room: Moderated Discussions
anon (anon.delete@this.anon.com) on August 21, 2013 5:40 am wrote:
> ⚛ (0xe2.0x9a.0x9b.delete@this.gmail.com) on August 21, 2013 4:12 am wrote:
> > anon (anon.delete@this.anon.com) on August 21, 2013 2:09 am wrote:
> > > ⚛ (0xe2.0x9a.0x9b.delete@this.gmail.com) on August 20, 2013 11:29 pm wrote:
>
> > > > 64-bit address space isn't a necessity.
> > >
> > > Yes it is, for the kernel, and for quite a few large applications,
> > > ranging from databases, to hpc, to cad and media editing.
> >
> > You did not carefully read my post. The model I described does work if the computer has for example
> > 32 GiB physical memory (which is 8x more than the 32-bit address space).
>
> Wrong. You did not read my reply. I did not say your stupid model of splitting up apps
> and over complicating them due to lack of address space would not work. I said that the
> required kernel facilities that do not exist in your fantasy world, but have existed for
> decades in the real one, are not inhibiting this model from being implemented.
>
> The fact is that the necessity does not come about because the kernel limits inter process
> communication and sharing. It is because it is not practical or economical to redesign hugely
> complex programs into a suboptimal form in order to accommodate for limited hardware.
>
> The correct approach is to use the correct hardware design for the job.
>
> > The applications you
> > mentioned can be split into multiple 32-bit processes: Media editing can be very easily split
> > into multiple 32-bit processes. If you put a two-stage application-level "page table" into a database
> > application, you can easily divide it into multiple 32-bit processes/threads. Etc.
>
> The applications I mentioned don't even need to be split. They can
> window into physical memory if needs be (this is what Oracle did).
>
> I did never imply that was impossible, when I said 64-bit was a necessity (which it is).
>
> >
> > In other words: You are very impatient. Not because you are inherently stupid, but because you didn't
> > want to spent the time needed to find the rationale behind my arguments. The several minutes you spent
> > responding to my post clearly aren't enough for you to understand what I described in my post.
>
> You should take your own advice, but in your case, you are inherently stupid.
>
> >
> > > Real users were hitting 32-bit x86 limits 10 years ago. Probably more.
> >
> > Yes. That is what I wrote. We were hitting the limits of the 32-bit address space.
>
> Yep. Sucks for your argument, doesn't it?
>
> >
> > > > 32-bit address space is big enough for 99.9% of programs.
> > >
> > > "Most do not require it, therefore nobody requires it."
> > >
> > > See the logical fallacy?
> >
> > Yes. I saw it clearly while I was writing my post. It is curious
> > that you considered worth your time to react to such a fallacy.
>
> Of course you don't care for logic.
>
> >
> > > > In 99.9% programs, 64-bit address space has no performance advantage over a 32-bit address space.
> > > >
> > > > The non-existent things that AMD actually did exploit were:
> > > >
> > > > (1) The absence of an easy and safe way to do inter-process page mapping.
> > >
> > > Wrong. This exists in Linux and POSIX for ever.
> >
> > It only means that I do not agree with some parts of the POSIX model.
>
> Which you fail to specify, of course.
>
> >
> > > > In particular it is the absence of
> > > > the following programming pattern: 32-bit process X selects a page P from its address space and directly or
> > > > indirectly tells the OS kernel to map the page P into the address space of the 32-bit process Y. The page P
> > > > has the same 64-bit physical memory address, but its 32-bit virtual addresses in X and Y are different.
> > >
> > > You either fail to describe your programming pattern properly,
> >
> > I think it isn't necessary to describe it in greater length, due to multiple reasons.
>
> I think that there is only one reason, and that is that you are a spectacular nincompoop.
>
> >
> > > or do not understand the concept
> > > of a unix process. Because either 1) this is already trivially possible, or 2) it is idiotic.
> > >
> > > One process does not change the structure of another process address space.
> > > This is simply not done, for good reason. Threads exist for this reason.
> >
> > The distinction between a Linux process and thread wasn't important enough for me to mention it in my post.
>
> Your idiotic example is describing *the fundamental* difference between processes and threads. That
> is: threads of execution will either modify the address space of one another, or they will not.
>
> >
> > > On the other hand, you can trivially set up a communication mechanism between two processes and make them
> > > do whatever you like. Process X can trivially tell process Y to perform some address space operation.
> >
> > If it is trivial, why aren't common Linux applications doing it?
>
> Because your idea to split things into multiple processes in order to address more ram is stupid.
>
> >
> > > >
> > > > (2) Complete lack of data serialization functions that
> > > > would be built into mainstream programming languages.
> > > > That is, the programming language needs to have a couple
> > > > of builtin functions for transforming graphs of objects
> > > > or structs into binary representation and for restoring
> > > > such graphs from binary data. All that is needed are
> > > > these two functions: bytes=save(x), y=load(bytes). I have
> > > > implemented such functions in a programming language
> > > > of my own, and the presence of such functions in the programming
> > > > language makes a big difference in terms of
> > > > communication between parts of a single program and in terms of communication between different programs.
> > >
> > > That's idiotic. There is no fundamental reason to put a data serialization protocol into a programming
> > > language, and nothing preventing serialization functions from being used. Which they are. Widely.
> >
> > A fundamental reason preventing serialization functions from being used is:
> > distance to the functions (ease of use from any point in a program).
>
> What kind of nonsense is this?
>
> >
> > > >
> > > > Case (1) obviously covers binary data only. For example, it can be used
> > > > to send pixels to the X server. Secondly, it can be used by case (2).
> > >
> > > Tip: for high performance cases on local machine where you're sharing pages, you don't run
> > > your serialization functions under your sharing abstraction. It's useless overhead.
> > >
> > > >
> > > > The combined absence of 1 and 2 was (and still is) making hard for processes to communicate.
> > >
> > > No it wasn't.
> > >
> > > > It is curious that you are fully responsible for the absence of (1) in the Linux kernel.
> > > >
> > > > By the way, it is my firm opinion that you do not know how to properly design an operating system
> > > > (... PID is just an integer, not a kernel object, and the integer value can be recycled? What an
> > > > exquisitely crappy idea, for a PID to be what it is in Linux! typeof(PID)==just_int => idiocy).
> > >
> > > There are an endless number of firm believers in Linux's stupidity
> > > and brokenness over the decades. You are in good company.
> >
> > It isn't an endless number.
>
> Maybe so, but today it is N+1.
>
> >
> > > >
> > > > > Yes, yes, "long mode" is a new mode bit, but at the same time you can see how it's
> > > > > really using the same instruction decode logic, the same execution units, etc etc.
> > > > > It's not two different front-ends, it's clearly one unified architecture.
> > > >
> > > > The success of the 64-bit "long mode" of x86 CPUs only proves that there are
> > > > huge mistakes in operating system design and in programming language design.
> > >
> > > Non sequitur. Even if your above false assertions were true,
> > > you have provided no logic to derive this from them.
> >
> > I don't care whether I convince you (personally) or not.
>
> I care that you're polluting the forum with bullshit and insults
> of a highly respected poster here who actually knows something.
>
> >
> > > >
> > > > > Yes, you could drop some legacy x86 stuff, but you can tell how integrated x86-64 is by simply
> > > > > noting that the stuff you'd drop is actually totally independent of the new long mode.
> > > >
> > > > x86-64 solely exists because AMD outcompeted all mainstream OS developers and programming language
> > > > designers. With the 64-bit address space AMD solved the memory limit problem in the large applications
> > > > that were starting to appear around the year 2000. Programs consuming 300 MiB of memory are just too
> > > > close to the 4 GiB limit of the 32-bit address space, and so 4 GiB starts to limit progress.
> > >
> > > What are you babbling about? 300MiB? Easily usable by a single process in standard 32-bit mode.
> >
> > You do not know how to read texts. The meaning of a text
> > is always behind obvious contradictions. Intelligent
> > people who understand complexity have no problems to clear
> > the obvious contradictions and to devise appropriate
> > generalizations and/or examples from their own experience in order to find the rationale.

>
> So are you going to say exactly how you are going to arbitrarily redefine words such that
>
> "Programs consuming 300 MiB of memory are just too close to the 4 GiB limit of the 32-bit
> address space"
>
> Is *not* a hilariously stupid falsehood?
>
> >
> > > OS developers
> > > > and programming language designers (including the C programming language) misunderstood what was happening
> > > > and failed to solve the coming problems before the CPU solved it. Basically, they failed to devise
> > > > a way of efficiently splitting the coming memory intensive applications into multiple 32-bit processes
> > >
> > > No, they did not. This was actually done. See remap_file_pages(2), for example.
> >
> > There is no semantic difference between mmap(2) and remap_file_pages(2).
>
> The example was to show that effort was made to support this broken model slightly
> more efficiently. So what is your point about semantic difference?
>
> >
> > > But it was done from necessity and Intel's IA64-driven artificial restriction on
> > > extending the address space. NOT because it was the best technical thing to do.
> > >
> > > > - and that is why x86-64 appeared as-if it was the logical step to do.
> > > >
> > > > > It's basically
> > > > > the same thing you might want to drop even if you never did long mode at all. The things you'd
> > > > > likely want to drop are the old 16-bit modes, and some of the worst excesses dragged in by the
> > > > > i286 in particular. But it may never happen, because it just isn't painful enough.
> > > > >
> > > > > And I really think that the whole "seamless integration" was the right thing to do.
> > > >
> > > > No wonder here. You (mis)designed the Linux kernel so there is
> > > > no reason to believe that you could imagine a different world.
> > >
> > > You're a joke, quite frankly. I should not have bothered wasting my time to reply to you.
> >
> > The wasted time is your own problem.
> >
> > > You did not show even a faint glimmer of understanding, and literally everything you said above was wrong.
> >
> > The argument presented in my previous post is valid.
> >
> > > If you can point to an operating system which does these things fundamentally better, with
> > > evidence; or even a concrete proposal of *exactly* how an application is restricted with
> > > current OS, and *exactly* what steps can solve it, then do so now. If not, STFU.
> >
> > I don't see any reason to share my work with you. If the description in my previous
> > post wasn't enough for you to reproduce the needed steps, that is your own problem.
> >
> > If you wanted to ask me how to implement some of the steps, you chose an inappropriate way of doing it.
> >
> > > I'm quite serious. You *do* realize that unmoderated forums
> > > and mailing lists are literally full of crazies,
> > > charlatans, and half-wits peddling their snake oil and offering exactly zero evidence or sound logic?
> > > And that your ranting post makes you indistinguishable from them? So, no more handwaving or insults here.
> > > Link to source code, or logically sound steps combined with link to numerical evidence.
> >
> > I refuse to give you access to my own work. If you do not believe that
> > what I wrote is true, then don't believe it. It is your choice.
> >
> > In my opinion, the world isn't going to be a better place
> > unless your style of writing and argumentation improve.
>
> Stop posting, imbecile.

Nice game. Please write more of it.
< Previous Post in ThreadNext Post in Thread >
TopicPosted ByDate
Power Goes LicensableKira2013/08/06 09:51 AM
  Power Goes Licensablesomeone2013/08/06 11:22 AM
    Power Goes Licensablesomeone2013/08/06 11:25 AM
      Power Goes LicensableDoug S2013/08/06 11:47 AM
        Trusted Foundry programMark Roulo2013/08/06 12:25 PM
          Trusted Foundry programMax2013/08/06 12:51 PM
          Trusted Foundry programKevin G2013/08/07 08:08 AM
            Trusted Foundry programMark Roulo2013/08/07 09:55 AM
              Trusted Foundry programKevin G2013/08/07 11:00 AM
  is it?Michael S2013/08/06 03:05 PM
    is it?Mark Roulo2013/08/06 04:16 PM
      is it?anon2013/08/06 05:30 PM
    is it?Eric2013/08/06 04:31 PM
      is it?Kira2013/08/06 05:17 PM
        is it?Eric2013/08/06 09:45 PM
  How does Power compare to ARM / MIPS?Drazick2013/08/11 03:27 AM
    How does Power compare to ARM / MIPS?Kira2013/08/11 04:52 PM
    How does Power compare to ARM / MIPS?Michael S2013/08/12 04:08 AM
    How does Power compare to ARM / MIPS?Brett2013/08/12 06:50 PM
      How does Power compare to ARM / MIPS?Mark Roulo2013/08/13 10:11 AM
        How does Power compare to ARM / MIPS?none2013/08/13 10:22 AM
          How does Power compare to ARM / MIPS?none2013/08/13 10:23 AM
        How does Power compare to ARM / MIPS?EduardoS2013/08/13 11:42 AM
          How does Power compare to ARM / MIPS?Exophase2013/08/13 12:27 PM
            How does Power compare to ARM / MIPS?Patrick Chase2013/08/15 12:17 PM
              How does Power compare to ARM / MIPS?David Hess2013/08/15 02:38 PM
                How does Power compare to ARM / MIPS?Mark Roulo2013/08/15 03:31 PM
                  How does Power compare to ARM / MIPS?EduardoS2013/08/15 08:45 PM
                    How does Power compare to ARM / MIPS?Patrick Chase2013/08/15 08:54 PM
                      How does Power compare to ARM / MIPS?EduardoS2013/08/15 09:21 PM
                How does Power compare to ARM / MIPS?Patrick Chase2013/08/15 07:47 PM
              How does Power compare to ARM / MIPS?Exophase2013/08/15 07:56 PM
                How does Power compare to ARM / MIPS?Patrick Chase2013/08/15 08:41 PM
        Server and Embedded "environments" are still distinguishedPaul A. Clayton2013/08/13 06:31 PM
        How does Power compare to ARM / MIPS?Michael S2013/08/14 01:45 AM
        How does Power compare to ARM / MIPS?Brett2013/08/14 08:17 PM
          How does Power compare to ARM / MIPS?anon2013/08/15 12:13 AM
            How does Power compare to ARM / MIPS?David Kanter2013/08/15 01:23 AM
              How does Power compare to ARM / MIPS?anon2013/08/15 03:51 AM
                How does Power compare to ARM / MIPS?someone2013/08/15 11:46 AM
          How does Power compare to ARM / MIPS?none2013/08/15 03:47 AM
          How does Power compare to ARM / MIPS?Doug S2013/08/15 09:46 AM
            How does Power compare to ARM / MIPS?David Kanter2013/08/15 12:48 PM
              Initial 64-bit ARM *can* run older 32-bit ARM codeMark Roulo2013/08/15 01:56 PM
                Initial 64-bit ARM *can* run older 32-bit ARM codeRonald Maas2013/08/19 09:19 PM
                  Initial 64-bit ARM *can* run older 32-bit ARM codeanon2013/08/20 01:58 AM
                    Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/20 10:58 AM
                      Initial 64-bit ARM *can* run older 32-bit ARM codeRicardo B2013/08/20 03:27 PM
                        Initial 64-bit ARM *can* run older 32-bit ARM coderwessel2013/08/20 04:04 PM
                        Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/20 04:05 PM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/20 04:54 PM
                            Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/20 05:09 PM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeTREZA2013/08/21 06:06 AM
                            Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/21 09:50 AM
                              Initial 64-bit ARM *can* run older 32-bit ARM codeTREZA2013/08/21 12:39 PM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeRicardo B2013/08/22 05:25 AM
                            Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/22 06:59 AM
                              Initial 64-bit ARM *can* run older 32-bit ARM codeRicardo B2013/08/22 07:28 AM
                                Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/22 08:36 AM
                                  Initial 64-bit ARM *can* run older 32-bit ARM codeRicardo B2013/08/22 09:21 AM
                                    Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/22 10:02 AM
                        Initial 64-bit ARM *can* run older 32-bit ARM codeGabriele Svelto2013/08/21 03:26 AM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeRicardo B2013/08/22 05:43 AM
                            Initial 64-bit ARM *can* run older 32-bit ARM codeRicardo B2013/08/22 05:47 AM
                        Initial 64-bit ARM *can* run older 32-bit ARM codeDan Fay2013/08/21 01:13 PM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeDavid Hess2013/08/22 10:55 AM
                            Initial 64-bit ARM *can* run older 32-bit ARM codegallier22013/08/22 12:35 PM
                              Initial 64-bit ARM *can* run older 32-bit ARM codeDavid Hess2013/08/22 01:26 PM
                      Initial 64-bit ARM *can* run older 32-bit ARM codeRonald Maas2013/08/20 05:38 PM
                      Initial 64-bit ARM *can* run older 32-bit ARM codeanon2013/08/20 06:07 PM
                        Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/21 05:15 AM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeanon2013/08/21 06:01 AM
                      An elaborate theory of why AMD64 succeeded2013/08/20 11:29 PM
                        An elaborate theory of why AMD64 succeededanon2013/08/21 02:09 AM
                          An elaborate theory of why AMD64 succeeded2013/08/21 04:12 AM
                            An elaborate theory of why AMD64 succeededbakaneko2013/08/21 04:39 AM
                              An elaborate theory of why AMD64 succeeded2013/08/21 05:20 AM
                                An elaborate theory of why AMD64 succeededbakaneko2013/08/21 05:41 AM
                                  An elaborate theory of why AMD64 succeeded2013/08/21 06:47 AM
                                    An elaborate theory of why AMD64 succeededbakaneko2013/08/21 07:26 AM
                            An elaborate theory of why AMD64 succeededanon2013/08/21 05:40 AM
                              An elaborate theory of why AMD64 succeeded2013/08/21 06:47 AM
                                Mod? (NT)anon2013/08/21 07:28 AM
                                  An elaborate theory of why AMD64 succeeded2013/08/21 08:34 AM
                                    An elaborate theory of why AMD64 succeededanon2013/08/21 09:04 AM
                                OK, let's try and keep this productiveDavid Kanter2013/08/21 01:27 PM
                                  OK, let's try and keep this productivePatrick Chase2013/08/21 11:42 PM
                                    OK, let's try and keep this productiveGabriele Svelto2013/08/22 02:48 AM
                                    OK, let's try and keep this productivePatrick Chase2013/08/22 09:03 AM
                                  OK, let's try and keep this productiveanon2013/08/22 12:47 AM
                            An elaborate theory of why AMD64 succeededCarlie Coats2013/08/21 06:31 AM
                              An elaborate theory of why AMD64 succeeded2013/08/21 06:59 AM
                              An elaborate theory of why AMD64 succeededMichael S2013/08/21 07:15 AM
                                An elaborate theory of why AMD64 succeededCarlie Coats2013/08/21 12:25 PM
                                  switched to write-only mode? (NT)Michael S2013/08/21 01:43 PM
                                  An elaborate theory of why AMD64 succeededrwessel2013/08/21 01:53 PM
                                  An elaborate theory of why AMD64 succeededMichael S2013/08/21 02:13 PM
                                  An elaborate theory of why AMD64 succeededBrett2013/08/21 06:25 PM
                                    An elaborate theory of why AMD64 succeededCarlie Coats2013/08/22 04:36 AM
                            An elaborate theory of why AMD64 succeededanon2013/08/21 06:46 AM
                              An elaborate theory of why AMD64 succeeded2013/08/21 07:07 AM
                                An elaborate theory of why AMD64 succeededanon2013/08/21 07:27 AM
                            An elaborate theory of why AMD64 succeededVincent Diepeveen2013/08/31 02:24 AM
                          An elaborate theory of why AMD64 succeededCarlie Coats2013/08/21 06:24 AM
                            An elaborate theory of why AMD64 succeededMichael S2013/08/21 07:03 AM
                              An elaborate theory of why AMD64 succeededCarlie Coats2013/08/21 12:27 PM
                        An elaborate theory of why AMD64 succeededStubabe2013/08/21 09:43 AM
                          An elaborate theory of why AMD64 succeededMichael S2013/08/21 10:02 AM
                            An elaborate theory of why AMD64 succeededStubabe2013/08/21 10:37 AM
                              An elaborate theory of why AMD64 succeededKlimax2013/08/21 11:09 AM
                                An elaborate theory of why AMD64 succeededStubabe2013/08/21 04:27 PM
                            An elaborate theory of why AMD64 succeededLinus Torvalds2013/08/21 10:40 AM
                              An elaborate theory of why AMD64 succeededYuhong Bao2013/08/22 01:11 AM
                                An elaborate theory of why AMD64 succeededEduardoS2013/08/22 03:25 AM
                                  An elaborate theory of why AMD64 succeedednone2013/08/22 04:29 AM
                                  An elaborate theory of why AMD64 succeededRicardo B2013/08/22 06:06 AM
                            An elaborate theory of why AMD64 succeededEduardoS2013/08/21 11:58 AM
                            An elaborate theory of why AMD64 succeededanon2013/08/22 01:25 AM
                              An elaborate theory of why AMD64 succeededEduardoS2013/08/22 03:29 AM
                          An elaborate theory of why AMD64 succeededSymmetry2013/08/21 10:51 AM
                            An elaborate theory of why AMD64 succeededStubabe2013/08/21 04:22 PM
                        An elaborate theory of why AMD64 succeededDan Fay2013/08/21 01:43 PM
                        No elaborate theories requiredDoug S2013/08/21 05:18 PM
                          No elaborate theories requiredGabriele Svelto2013/08/22 05:28 AM
                            No elaborate theories requiredDoug S2013/08/22 10:03 AM
                          No elaborate theories requiredDavid Hess2013/08/22 02:38 PM
                            No elaborate theories requiredDoug S2013/08/22 03:30 PM
                              No elaborate theories requiredDavid Hess2013/08/23 09:42 AM
                                No elaborate theories requiredanon2013/08/24 02:09 AM
                                  No elaborate theories requiredDavid Hess2013/08/24 05:36 PM
                        An very bad theory of why AMD64 succeededEric Bron2013/08/23 02:50 AM
                          An very bad theory of why AMD64 succeededEduardoS2013/08/23 04:36 AM
                      How about dropping x87?David Kanter2013/08/21 10:46 AM
                        How about dropping x87?Michael S2013/08/21 11:01 AM
                          How about dropping x87?David Kanter2013/08/21 01:34 PM
                            How about dropping x87?anonymou52013/08/21 06:27 PM
                              How about dropping x87?David Kanter2013/08/22 01:02 AM
                                How about dropping x87?TREZA2013/08/22 03:40 AM
                                How about dropping x87?rwessel2013/08/22 12:41 PM
                        Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/20 08:15 PM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeRonald Maas2013/08/21 12:38 PM
                            Initial 64-bit ARM *can* run older 32-bit ARM codebakaneko2013/08/21 01:17 PM
                            Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/21 02:30 PM
                            Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/21 06:10 PM
                              Initial 64-bit ARM *can* run older 32-bit ARM codenone2013/08/21 08:25 PM
                                Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 01:19 AM
                                  Initial 64-bit ARM *can* run older 32-bit ARM codeanon2013/08/22 01:53 AM
                                    Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 02:07 AM
                                      Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 02:11 AM
                                        Initial 64-bit ARM *can* run older 32-bit ARM codenone2013/08/22 02:30 AM
                                          Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 03:34 AM
                                            Initial 64-bit ARM *can* run older 32-bit ARM codenone2013/08/22 06:04 AM
                                              Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 07:56 AM
                                  Initial 64-bit ARM *can* run older 32-bit ARM codenone2013/08/22 02:09 AM
                                    Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 02:26 AM
                                      Initial 64-bit ARM *can* run older 32-bit ARM codenone2013/08/22 02:38 AM
                                        Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 02:52 AM
                                          Initial 64-bit ARM *can* run older 32-bit ARM codenone2013/08/22 03:13 AM
                                  Initial 64-bit ARM *can* run older 32-bit ARM coderwessel2013/08/22 01:06 PM
                                    Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 01:42 PM
                                      Initial 64-bit ARM *can* run older 32-bit ARM coderwessel2013/08/22 07:06 PM
                                        Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/23 04:53 AM
                                          Initial 64-bit ARM *can* run older 32-bit ARM coderwessel2013/08/23 09:14 PM
                                        Initial 64-bit ARM *can* run older 32-bit ARM codeTREZA2013/08/23 12:53 PM
                                    Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/22 02:15 PM
                                      Initial 64-bit ARM *can* run older 32-bit ARM coderwessel2013/08/22 07:10 PM
                                        Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/23 04:38 AM
                                        Initial 64-bit ARM *can* run older 32-bit ARM codeEugene Nalimov2013/08/23 01:00 PM
                                          Initial 64-bit ARM *can* run older 32-bit ARM codeanon2013/08/24 02:11 AM
                                            Initial 64-bit ARM *can* run older 32-bit ARM codeEugene Nalimov2013/08/26 02:35 PM
                                          Initial 64-bit ARM *can* run older 32-bit ARM codevvid2013/08/28 09:36 AM
                                            Initial 64-bit ARM *can* run older 32-bit ARM codeEugene Nalimov2013/08/29 09:51 AM
                                              Initial 64-bit ARM *can* run older 32-bit ARM codeMax2013/08/30 01:12 PM
                                                Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/30 04:13 PM
                                                  Separate instruction and data registers BAD or NOT, m68kBrett2013/08/30 06:42 PM
                                                    Separate instruction and data registers BAD or NOT, m68kanon2013/08/30 07:29 PM
                                                      Trade-offs are not constantPaul A. Clayton2013/08/31 10:33 AM
                                                      Separate instruction and data registers BAD or NOT, m68kMichael S2013/08/31 11:42 AM
                                                      Separate instruction and data registers BAD or NOT, m68kBrett2013/08/31 02:51 PM
                                                    Separate instruction and data registers BAD or NOT, m68ksomeone2013/08/30 11:15 PM
                                                      Separate instruction and data registers BAD or NOT, m68kBrett2013/08/31 02:54 PM
                                                      Separate instruction and data registers BAD or NOT, m68kBrett2013/08/31 03:08 PM
                                                        Separate instruction and data registers BAD or NOT, m68kanon2013/08/31 07:43 PM
                                                          Separate instruction and data registers BAD or NOT, m68kMichael S2013/09/01 01:07 AM
                                                            Partitioned register sets BAD or NOTBrett2013/09/01 02:03 AM
                                                              Partitioned register sets BAD or NOTPatrick Chase2013/09/01 10:38 AM
                                                                Embedded VLIWPaul A. Clayton2013/09/01 12:54 PM
                                                                  Embedded VLIWPatrick Chase2013/09/01 03:14 PM
                                                                    Thanks for the additional info (NT)Paul A. Clayton2013/09/01 08:54 PM
                                                                Partitioned register sets BAD or NOTPatrick Chase2013/09/02 12:06 AM
                                                                Stop bitsBrett2013/09/02 02:24 PM
                                                                  Stop bitsPatrick Chase2013/09/02 03:00 PM
                                                            Separate instruction and data registers BAD or NOT, m68kanon2013/09/01 10:12 AM
                                                    Separate instruction and data registers BAD or NOT, m68kRichardC2013/08/31 06:03 AM
                                                    Separate instruction and data registers BAD or NOT, m68kMegol2013/09/04 07:04 AM
                                                      Separate instruction and data registers BAD or NOT, m68kBrett2013/09/04 11:27 PM
                                                        Separate instruction and data registers BAD or NOT, m68kMegol2013/09/05 07:32 AM
                                                          Separate instruction and data registers BAD or NOT, m68kgallier22013/09/05 09:37 AM
                                                            Separate instruction and data registers BAD or NOT, m68kMegol2013/09/05 10:48 AM
                                                          Separate instruction and data registers BAD or NOT, m68kJouni Osmala2013/09/05 11:18 AM
                                                            Separate instruction and data registers BAD or NOT, m68kMegol2013/09/06 05:17 AM
                                                            John Mashey post is sorta relevant ...Mark Roulo2013/09/06 09:30 AM
                                                              John Mashey post is sorta relevant ...Megol2013/09/06 11:59 AM
                                                                John Mashey post is sorta relevant ...Brett2013/09/06 06:32 PM
                                                                  John Mashey post is sorta relevant ...Eugene Nalimov2013/09/08 11:10 AM
                                                                    John Mashey post is sorta relevant ...Brett2013/09/08 02:54 PM
                                                                      John Mashey post is sorta relevant ...David Kanter2013/09/08 05:06 PM
                                                                        John Mashey post is sorta relevant ...Brett2013/09/08 07:48 PM
                                                                          John Mashey post is sorta relevant ...Jouni Osmala2013/09/09 06:26 AM
                                                                            John Mashey post is sorta relevant ...Brett2013/09/13 04:51 PM
                                                                              John Mashey post is sorta relevant ...Megol2013/09/14 09:56 AM
                                                                      John Mashey post is sorta relevant ...Eugene Nalimov2013/09/08 06:59 PM
                                                                        John Mashey post is sorta relevant ...Brett2013/09/08 07:55 PM
                                                                        Renesas RX vs x86/68K/VAXMichael S2013/09/09 06:15 AM
                                                  Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/31 11:09 AM
                                                    Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/31 11:34 AM
                                                      Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/31 12:26 PM
                                                        Initial 64-bit ARM *can* run older 32-bit ARM codeLinus Torvalds2013/08/31 02:12 PM
                                                          Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/31 03:49 PM
                                                    Initial 64-bit ARM *can* run older 32-bit ARM codegallier22013/08/31 12:15 PM
                              Initial 64-bit ARM *can* run older 32-bit ARM codeRonald Maas2013/08/21 11:54 PM
                                Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 01:10 AM
                                Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/22 02:47 AM
                                  Initial 64-bit ARM *can* run older 32-bit ARM codemas2013/08/22 03:17 AM
                              Initial 64-bit ARM *can* run older 32-bit ARM codeGabriele Svelto2013/08/22 07:53 AM
                      Initial 64-bit ARM *can* run older 32-bit ARM codeMr. Camel2013/08/23 06:33 AM
                        Initial 64-bit ARM *can* run older 32-bit ARM codeMichael S2013/08/23 07:03 AM
                        Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/23 07:39 AM
                          Initial 64-bit ARM *can* run older 32-bit ARM codeRonald Maas2013/08/23 10:13 AM
                            Initial 64-bit ARM *can* run older 32-bit ARM codeEduardoS2013/08/23 10:28 AM
                        Initial 64-bit ARM *can* run older 32-bit ARM coderwessel2013/08/23 10:14 PM
              How does Power compare to ARM / MIPS?EduardoS2013/08/15 08:35 PM
                How does Power compare to ARM / MIPS?Carlie Coats2013/08/21 12:31 PM
              Mixing 32b and 64b code in a kernelDoug S2013/08/16 09:50 AM
                LPAE is here now!Mark Roulo2013/08/16 10:45 AM
                  LPAE is here now!Patrick Chase2013/08/16 12:29 PM
                    LPAE is here now!anon2013/08/16 06:11 PM
                Mixing 32b and 64b code in a kernelRicardo B2013/08/17 10:52 AM
                  Mixing 32b and 64b code in a kernelLinus Torvalds2013/08/17 11:09 AM
                    Mixing 32b and 64b code in a kernelMax2013/08/18 02:57 PM
                Mixing 32b and 64b code in a kernelCarlie Coats2013/08/21 12:46 PM
            How does Power compare to ARM / MIPS?Ungo2013/08/15 12:59 PM
              How does Power compare to ARM / MIPS?Doug S2013/08/15 07:39 PM
                How does Power compare to ARM / MIPS?Patrick Chase2013/08/15 08:04 PM
                  How does Power compare to ARM / MIPS?Patrick Chase2013/08/15 09:01 PM
                How does Power compare to ARM / MIPS?Jukka Larja2013/08/16 06:54 AM
          How does Power compare to ARM / MIPS?Patrick Chase2013/08/15 07:29 PM
            How does Power compare to ARM / MIPS?Brett2013/08/16 11:34 PM
              How does Power compare to ARM / MIPS?Doug S2013/08/17 11:18 AM
                How does Power compare to ARM / MIPS?Brett2013/08/17 11:35 AM
                  16 vs 32 general purpose registersMark Roulo2013/08/17 11:40 AM
                    16 vs 32 general purpose registersMichael S2013/08/17 02:55 PM
                      16 vs 32 general purpose registersPatrick Chase2013/08/18 04:55 AM
                  How does Power compare to ARM / MIPS?EduardoS2013/08/17 05:30 PM
                How does Power compare to ARM / MIPS?Patrick Chase2013/08/17 12:49 PM
                  > 32 general purpose registersMark Roulo2013/08/17 01:58 PM
                    > 32 general purpose registersMichael S2013/08/17 02:25 PM
                    > 32 general purpose registersPatrick Chase2013/08/17 03:11 PM
                      > 32 general purpose registersExophase2013/08/18 10:17 AM
                        IIRC, AArch32 registers (shadow registers et al.) map onto AArch64 registers (NT)Paul A. Clayton2013/08/18 02:51 PM
                          IIRC, AArch32 registers (shadow registers et al.) map onto AArch64 registersExophase2013/08/18 09:28 PM
                            IIRC, AArch32 registers (shadow registers et al.) map onto AArch64 registersMichael S2013/08/19 02:17 AM
                              IIRC, AArch32 registers (shadow registers et al.) map onto AArch64 registersExophase2013/08/19 08:42 AM
                    > 32 general purpose registersDoug S2013/08/18 12:21 AM
        How does Power compare to ARM / MIPS?Brett2013/08/17 11:20 AM
          How does Power compare to ARM / MIPS?Gabriele Svelto2013/08/18 02:12 PM
            How does Power compare to ARM / MIPS?Exophase2013/08/18 09:35 PM
          How does Power compare to ARM / MIPS?mas2013/08/20 03:29 PM
      How does Power compare to ARM / MIPS?mas2013/08/20 03:15 PM
        How does Power compare to ARM / MIPS?none2013/08/20 03:31 PM
          How does Power compare to ARM / MIPS?mas2013/08/20 04:08 PM
        How does Power compare to ARM / MIPS?Linus Torvalds2013/08/20 03:49 PM
          How does Power compare to ARM / MIPS?mas2013/08/20 05:53 PM
            How does Power compare to ARM / MIPS?Linus Torvalds2013/08/20 07:52 PM
              How does Power compare to ARM / MIPS?mas2013/08/21 12:21 AM
                How does Power compare to ARM / MIPS?Michael S2013/08/21 06:17 AM
                  How does Power compare to ARM / MIPS?mas2013/08/21 07:05 AM
                    How does Power compare to ARM / MIPS?Michael S2013/08/21 07:27 AM
                      How does Power compare to ARM / MIPS?none2013/08/21 07:53 AM
                        How does Power compare to ARM / MIPS?Michael S2013/08/21 08:02 AM
                          XScale wasn't synthesizablePatrick Chase2013/08/21 12:36 PM
                            XScale wasn't synthesizableMichael S2013/08/21 02:00 PM
                              XScale wasn't synthesizablePatrick Chase2013/08/21 03:02 PM
                              XScale wasn't synthesizablePatrick Chase2013/08/21 03:11 PM
                      How does Power compare to ARM / MIPS?mas2013/08/21 08:45 AM
                  How does Power compare to ARM / MIPS?mas2013/08/22 04:08 AM
            How does Power compare to ARM / MIPS?Doug S2013/08/20 10:47 PM
              How does Power compare to ARM / MIPS?Michael S2013/08/21 07:32 AM
              How does Power compare to ARM / MIPS?Patrick Chase2013/08/21 08:37 AM
              How does Power compare to ARM / MIPS?Patrick Chase2013/08/21 11:45 AM
                How does Power compare to ARM / MIPS?EduardoS2013/08/21 12:02 PM
                  How does Power compare to ARM / MIPS?Patrick Chase2013/08/21 12:27 PM
                    How does Power compare to ARM / MIPS?Patrick Chase2013/08/21 12:47 PM
                      Is simplistic prediction still prediction?Paul A. Clayton2013/08/21 03:59 PM
                        Is simplistic prediction still prediction?Patrick Chase2013/08/22 12:16 PM
                          More like always not-taken, but yeah lame prediction (NT)Paul A. Clayton2013/08/22 01:27 PM
                      How does Power compare to ARM / MIPS?Linus Torvalds2013/08/21 04:25 PM
                        Athlon did something similar (but no dirty special case)Paul A. Clayton2013/08/21 07:47 PM
                          Athlon did something similar (but no dirty special case)Patrick Chase2013/08/22 12:13 PM
                        How does Power compare to ARM / MIPS?Patrick Chase2013/08/22 11:56 AM
                        How does Power compare to ARM / MIPS?Patrick Chase2013/08/22 12:29 PM
                          How does Power compare to ARM / MIPS?Linus Torvalds2013/08/22 01:40 PM
                    How does Power compare to ARM / MIPS?anon2013/08/22 12:45 AM
                      How does Power compare to ARM / MIPS?Niels Jørgen Kruse2013/08/22 02:38 AM
                        How does Power compare to ARM / MIPS?Michael S2013/08/22 02:58 AM
                      How does Power compare to ARM / MIPS?Patrick Chase2013/08/22 08:44 AM
                        Are you sure P4 used IP-based way prediction?Paul A. Clayton2013/08/22 02:04 PM
                          Are you sure P4 used IP-based way prediction?Patrick Chase2013/08/22 03:40 PM
                        How does Power compare to ARM / MIPS?Patrick Chase2013/08/24 10:19 AM
                          How does Power compare to ARM / MIPS?Anon2013/08/25 01:15 AM
                            How does Power compare to ARM / MIPS?Patrick Chase2013/08/25 07:49 PM
                              Replay tornadoes? Paul A. Clayton2013/08/25 08:43 PM
                        How does Power compare to ARM / MIPS?anon2013/08/25 04:22 PM
                          How does Power compare to ARM / MIPS?anonymou52013/08/25 04:35 PM
                            I have the date and topic for a P4 Dcache postPaul A. Clayton2013/08/25 08:34 PM
                              Obviously that should have been "anonymous (no@spam.com)" (NT)Paul A. Clayton2013/08/25 08:45 PM
                              I have the date and topic for a P4 Dcache postPatrick Chase2013/08/26 09:04 AM
                                Could you provide a link?Paul A. Clayton2013/08/26 10:32 AM
                                  Could you provide a link?Patrick Chase2013/08/26 10:43 AM
                                    Thanks. I had a text copy without url.Paul A. Clayton2013/08/26 03:20 PM
                                      Thanks. I had a text copy without url.Patrick Chase2013/08/26 06:53 PM
                            How does Power compare to ARM / MIPS?anon2013/08/25 09:37 PM
                              How does Power compare to ARM / MIPS?David Kanter2013/08/26 02:31 PM
                              How does Power compare to ARM / MIPS?Patrick Chase2013/08/27 05:11 PM
                                I think even later P4s used width pipelining (NT)Paul A. Clayton2013/08/27 06:20 PM
    How does Power compare to ARM / MIPS?Vincent Diepeveen2013/08/26 05:04 AM
Reply to this Topic
Name:
Email:
Topic:
Body: No Text
How do you spell tangerine? 🍊