By: hobold (hobold.delete@this.vectorizer.org), September 14, 2021 5:47 am
Room: Moderated Discussions
Heikki Kultala (heikki.kultala.delete@this.gmail.com) on September 13, 2021 7:33 am wrote:
> There are no little cores in Alder Lake. There are mediun cores. And these
> medium cores gives twice the performance/area than the big cores.
>
> Now there is throughput performance worth 12 big cores, but area of only 10 big cores.
>
> The advantage would be even better if there was 16 instead of 8 of those medium cores.
Why stop there? By that line of reasoning, one would want many different core sizes from big to little. Say, core N has performance proportional to 0.9^N, silicon area proportional to 0.8^N, and power consumption proportional to 0.75^N.
This way, the fewer threads are running, the faster each thread gets to run. And the more runnable threads there are, the more efficient the cores are getting (both in terms of energy as well as silicon real estate).
Punch line: total silicon area and power consumption of an infinite number of such cores is finite. :-) But performance is finite, too. And yes, the extreme version of this idea is a joke ... but what about three, four, five ... core sizes?
One could always shrink and re-use previous generation cores, instead of having to re-design every core type from scratch. Or one could use parameterized synthesizable cores and let core proliferation be a semi-automatic thing. We do have AI now to handle the bulk of grunt work.
> There are no little cores in Alder Lake. There are mediun cores. And these
> medium cores gives twice the performance/area than the big cores.
>
> Now there is throughput performance worth 12 big cores, but area of only 10 big cores.
>
> The advantage would be even better if there was 16 instead of 8 of those medium cores.
Why stop there? By that line of reasoning, one would want many different core sizes from big to little. Say, core N has performance proportional to 0.9^N, silicon area proportional to 0.8^N, and power consumption proportional to 0.75^N.
This way, the fewer threads are running, the faster each thread gets to run. And the more runnable threads there are, the more efficient the cores are getting (both in terms of energy as well as silicon real estate).
Punch line: total silicon area and power consumption of an infinite number of such cores is finite. :-) But performance is finite, too. And yes, the extreme version of this idea is a joke ... but what about three, four, five ... core sizes?
One could always shrink and re-use previous generation cores, instead of having to re-design every core type from scratch. Or one could use parameterized synthesizable cores and let core proliferation be a semi-automatic thing. We do have AI now to handle the bulk of grunt work.
Topic | Posted By | Date |
---|---|---|
alder lake. | inteluser | 2021/09/10 01:52 AM |
alder lake. | Andrei F | 2021/09/10 09:31 AM |
alder lake. | Andrey | 2021/09/10 09:38 AM |
alder lake. | rwessel | 2021/09/10 11:18 AM |
alder lake. | Andrei F | 2021/09/10 12:49 PM |
alder lake. | Andrey | 2021/09/10 04:12 PM |
alder lake. | David Hess | 2021/09/10 07:39 PM |
alder lake. | Andrey | 2021/09/11 12:28 AM |
alder lake. | --- | 2021/09/10 05:24 PM |
alder lake. | Andrei F | 2021/09/12 01:09 AM |
DVFS | David Kanter | 2021/09/12 09:58 PM |
DVFS | Andrei F | 2021/09/13 01:02 AM |
DVFS | Anon | 2021/09/13 03:28 AM |
DVFS | Jukka Larja | 2021/09/13 05:35 AM |
DVFS | Andrei F | 2021/09/14 12:07 AM |
DVFS | Jukka Larja | 2021/09/14 04:11 AM |
DVFS | Andrei F | 2021/09/14 07:55 AM |
DVFS | Jukka Larja | 2021/09/14 10:23 AM |
DVFS | --- | 2021/09/13 10:19 AM |
DVFS | Doug S | 2021/09/13 10:57 AM |
DVFS | David Hess | 2021/09/13 11:32 AM |
DVFS | --- | 2021/09/13 01:06 PM |
DVFS | David Hess | 2021/09/13 02:21 PM |
DVFS | David Kanter | 2021/09/15 03:05 PM |
DVFS | David Hess | 2021/09/13 11:46 AM |
DVFS | Jukka Larja | 2021/09/14 04:35 AM |
Quick shutdown? | David Kanter | 2021/09/15 10:46 AM |
Quick shutdown? | Andrei F | 2021/09/16 07:12 AM |
Quick shutdown? | David Kanter | 2021/09/16 11:04 AM |
Quick shutdown? | Andrei F | 2021/09/17 01:35 AM |
Quick shutdown? | Andrei F | 2021/09/17 01:38 AM |
and weren't 'they' right? | Daniel B | 2021/09/13 04:20 AM |
and weren't 'they' right? | Andrei F | 2021/09/13 04:51 AM |
and weren't 'they' right? | Daniel B | 2021/09/13 06:29 AM |
and weren't 'they' right? | anon | 2021/09/13 05:07 AM |
and weren't 'they' right? | Jukka Larja | 2021/09/13 05:26 AM |
and weren't 'they' right? | anon | 2021/09/13 11:37 PM |
Alder Lake has no little cores | Heikki Kultala | 2021/09/13 06:33 AM |
Alder Lake has no little cores | Michael S | 2021/09/13 07:33 AM |
Alder Lake has no little cores | me | 2021/09/13 10:45 AM |
Alder Lake has no little cores | Heikki Kultala | 2021/09/13 01:49 PM |
Alder Lake has no little cores | anon | 2021/09/13 11:42 PM |
why stop at two core sizes? | hobold | 2021/09/14 05:47 AM |
Memory caches did this, right? | Mark Roulo | 2021/09/14 02:51 PM |
Memory caches did this, right? | Brett | 2021/09/14 07:17 PM |
Memory caches did this, right? | Kevin G | 2021/09/16 03:10 PM |
Large reorder buffers (L1+L2) | ⚛ | 2021/09/15 11:24 AM |
Large reorder buffers (L1+L2) | hobold | 2021/09/15 12:06 PM |
Alder Lake has no little cores | Adrian | 2021/09/14 08:33 AM |
and weren't 'they' right? | David Hess | 2021/09/13 12:00 PM |
Battery vs Performance | Mark Roulo | 2021/09/13 12:18 PM |
Battery vs Performance | Doug S | 2021/09/13 02:05 PM |
Battery vs Performance | David Hess | 2021/09/13 02:28 PM |
Battery vs Performance | --- | 2021/09/13 05:08 PM |
Battery vs Performance | --- | 2021/09/13 05:08 PM |
Battery vs Performance | Doug S | 2021/09/13 08:53 PM |
Battery vs Performance | Anon | 2021/09/14 06:42 AM |
and weren't 'they' right? | Daniel B | 2021/09/13 12:57 PM |
and weren't 'they' right? | David Hess | 2021/09/13 02:11 PM |
and weren't 'they' right? | --- | 2021/09/13 02:38 PM |
and weren't 'they' right? | --- | 2021/09/13 02:32 PM |
and weren't 'they' right? | Brendan | 2021/09/14 03:30 AM |
and weren't 'they' right? | Jukka Larja | 2021/09/14 04:31 AM |
and weren't 'they' right? | Etienne Lorrain | 2021/09/14 12:29 AM |